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Abstract 
 

 

Most mobile communications take place at indoor environments, especially in 
commercial and corporate scenarios. These places normally present coverage and 
capacity issues due to the poor signal quality, which degrade the end-user Quality of 
Experience (QoE). In these cases, mobile operators are offering small cells to overcome 
the indoor issues, being femtocells the main deployed base stations. 

Femtocell networks provide significant benefits to mobile operators and their 
clients. However, the massive integration and the particularities of femtocells, make 
the maintenance of these infrastructures a challenge for engineers. In this sense, Self-
Organizing Networks (SON) techniques play an important role. These techniques are a 
key feature to intelligently automate network operation, administration and 
management procedures. 

SON mechanisms are based on the analysis of the mobile network alarms, counters 
and indicators. In parallel, electronics, sensors and software applications evolve rapidly 
and are everywhere. Thanks to this, valuable context information can be gathered, 
which properly managed can improve SON techniques performance. Within possible 
context data, one of the most active topics is the indoor positioning due to the 
immediate interest on indoor location-based services (LBS). 

At indoor commercial and corporate environments, user densities and traffic vary 
in spatial and temporal domain. These situations lead to degrade cellular network 
performance, being temporary traffic fluctuations and focused congestions one of the 
most common issues. Load balancing techniques, which have been identified as a use 
case in self-optimization paradigm for Long Term Evolution (LTE), can alleviate these 
congestion problems. This use case has been widely studied in macrocellular networks 
and outdoor scenarios. However, the particularities of femtocells, the characteristics of 
indoor scenarios and the influence of users’ mobility pattern justify the development of 
new solutions. 
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The goal of this PhD thesis is to design and develop novel and automatic solutions 
for temporary traffic fluctuations and focused network congestion issues in commercial 
and corporate femtocell environments. For that purpose, the implementation of an 
efficient management architecture to integrate context data into the mobile network 
and SON mechanisms is required. Afterwards, an accurate indoor positioning system is 
developed, as a possible inexpensive solution for context-aware SON. Finally, advanced 
self-optimization methods to shift users from overloaded cells to other cells with spare 
resources are designed. These methods tune femtocell configuration parameters based 
on network information, such as ratio of active users, and context information, such as 
users’ position. All these methods are evaluated in both a dynamic LTE system-level 
simulator and in a field-trial. 
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Resumen 
 

La inminente evolución de la red de telefonía móvil se ha visto condicionada a la 
gran expansión de teléfonos inteligentes y otros dispositivos electrónicos conectados a 
la misma. Como consecuencia, nuevas tecnologías (LTE – Long Term Evolution) son 
desplegadas sobre las actuales redes móviles, y una gran diversidad de estaciones base 
(desde macroceldas hasta femtoceldas) se están integrando. Esta nueva situación 
genera redes móviles heterogéneas (HCN – Heterogeneous Cellular Networks) que son 
muy complejas y difíciles de gestionar por los operadores. Para facilitar esta gestión, es 
necesario el desarrollo de nuevas técnicas inteligentes de auto-gestión y auto-
mantenimiento (SON – Self-Organizing Networks) que ayuden a los operador a 
afrontar la gestión de la red móvil de forma automática y menos costosa. En este 
sentido, diversos organismos se han encargado de definir una serie de casos de uso de 
SON para afrontar estos retos.  

En la actualidad, el tráfico de la red móvil se concentra básicamente en escenarios 
de interior (casas, oficinas, centros comerciales), donde es habitual la ausencia de 
cobertura o una baja calidad de servicio (QoS – Quality of Service). Para solventar 
estos problemas, el auge de las estaciones de baja potencia y corto alcance es la 
solución para los operadores. A estos dispositivos se les conoce con el nombre de 
femtoceldas y ofrecen una serie de particularidades frente a las estaciones base 
convencionales. Entre sus características, cabe destacar la facilidad y simplicidad para 
su integración en la red móvil, únicamente es necesario su conexión a Internet (plug 
and play) para su funcionamiento. Además, debido a la baja complejidad del hardware, 
presentan una limitación en el número de usuarios a procesar simultáneamente. Esta 
restricción está entre 1 y 64 usuarios. El despliegue de femtoceldas permite aumentar 
la cobertura en entornos de interior, mejorar la calidad de la señal, además de 
aumentar la vida de la batería de los terminales debido a la proximidad entre el 
terminal y la femtocelda. 

La concentración de usuarios en este tipo de entornos es muy dinámica, creando 
agrupaciones de usuarios en diversos puntos a lo largo del día (reunión en una oficina, 
evento en un centro comercial, etc.). Ante estas situaciones, el tráfico de la red sufre 
variaciones temporales y espaciales, lo cual puede ocasionar congestiones en dichas 
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zonas. Por ello, los operadores se ven obligados a diseñar algoritmos de balance de 
carga que sean capaces de gestionar y evitar estos problemas, más allá de utilizar 
técnicas ineficientes como sobredimensionar la red. 

Por otro lado, los mecanismos SON hacen uso de parámetros e indicadores 
proporcionados por la red para, en función de dichos valores, aplicar una nueva 
configuración de parámetros que mejore el servicio final. Sin embargo, existe 
información muy valiosa externa a la red del operador y que pueden permitir la mejora 
de estos mecanismos. La información de contexto o context-awareness, es un concepto 
emergente que cada vez tiene más influencia en las diferentes disciplinas debido a la 
gran expansión de dispositivos electrónicos en todo el mundo y su permanente 
conectividad a Internet. Los datos obtenidos por las diversas fuentes proporcionan 
información de contexto, es decir, parámetros sobre el estado actual de personas, 
lugares, objetos o dispositivos en un determinado entorno que, procesados de la manera 
adecuada pueden ofrecer grandes ventajas a los mecanismos SON. 

Finalmente, para la integración de todos estos conceptos, se precisa del diseño de 
una arquitectura de red que sea capaz de gestionar y obtener toda la información 
necesaria desde las distintas fuentes de contexto y proporcionársela a los mecanismos 
SON. Esto permite una adaptación de los parámetros de configuración en los elementos 
de red en entornos de interior más rápida y eficiente. De este modo, se obtiene una red 
robusta y dinámica frente a cambios bruscos manteniendo unos valores soportados por 
las políticas del operador y ofreciendo al usuario final una buena calidad de servicio.  
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Chapter 1 

1 Introduction 
 

 

This opening chapter aims to introduce the reader to the motivation and the 
context of this PhD thesis, the research objectives and the structure of the document. 

 

1.1 Motivation 

Mobile networks have become a standard infrastructure in human beings life for 
several services, e.g., voice calls, text messages, video streaming, etc. Furthermore, the 
requirements posed by the massive expansion of smart-devices and the demand of 
mobile network services and applications increase the global mobile data traffic (74% 
of growth in 2015 [1]). Consequently, current mobile network infrastructures are 
driving towards their limits. In order to overcome these limits, mobile communications 
have dramatically changed and rapidly evolved. Operators are deploying new mobile 
technologies, e.g., LTE (Long Term Evolution). The LTE technology has been 
integrated over the already existing mobile infrastructures; GSM (Global System for 
Mobile Communications), UMTS (Universal Mobile Telecommunications System), etc., 
leading to different Radio Access Technologies (RAT). Additionally, whilst classical 
base stations (macrocells) covered areas of tens of kilometers, operators trend to 
deploy new short-range base stations: small cells (e.g., microcells, picocells, femtocells, 
etc.). These solutions create complex Heterogeneous Cellular Networks (HCNs), which 
partially support the growing demand of clients and applications services.  

Mobile communication providers and network engineers have to analyze a huge 
amount of data in HCNs to assess network performance and to propose the best 
strategy to solve performance issues. The analysis of these large amounts of 
information is not a simple task and requires long time and vast resources. That 
translates into increased capital (CAPEX) and operational expenditures (OPEX) for 
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the operator. Therefore, the complexity in the operation, administration and 
management (OAM) of HCNs demands the development of new network self-
management techniques. In this sense, key features to intelligently and autonomously 
automate network management procedures are required. Self-Organizing Networks 
(SON) [2] [3] paradigm is proposed to automatically and cleverly manage mobile 
cellular network procedures, helping to reduce both, CAPEX and OPEX. SON 
mechanisms help engineers to reduce time and effort to plan, optimize and 
troubleshoot cellular networks. Some early studies in this field are [4] [5] [6] [7] [8] [9]. 

Another challenge for operators is the high number of mobile connections 
originated at indoor environments, i.e., home, work, shopping malls, etc., especially in 
commercial and corporate scenarios. Recent market surveys [10] demonstrate that 
around 80% of all mobile broadband traffic is consumed by users located indoors. 
These places normally present coverage and capacity issues due to the poor signal 
quality, which degrade the end-user Quality of Experience (QoE). To solve or reduce 
the impact of these indoor issues, operators are proposing small cells. In particular, 
they are deploying low-cost radio base stations called femtocells [11]. These devices are 
small versions of standard macrocells which have special and specific characteristics 
(e.g., low-cost, short-range, open/close control access, etc.) compared to other base 
stations. 

Indoor environments present hard and difficult conditions to self-manage these 
femtocell networks due to the unplanned deployments, cell overlapping, lack of 
coverage, interference, etc. This fact has stimulated research activity in the field of 
parameters self-tuning [12] [13] [14] [15] [16] [17]. Additionally, data traffic and local 
user densities present temporal and spatial concentrations. In these conditions, indoor 
environments might suffer from serious network problems because most traffic could be 
located in the same femtocell(s) during short periods. Hence, some femtocells could be 
overloaded while others are low-loaded. An example of these temporal and spatial 
variations is easily found in shopping malls, where a temporal spectacle or event could 
gather many people interested in taking pictures to share them in social networks for a 
while. A simple solution to support these situations could be to plan the network to 
offer the maximum expected resources all the time. Nevertheless, this solution would 
largely increase CAPEX. As a consequence, new SON mechanisms focused on 
offloading those temporal overloaded femtocells to avoid or solve these situations and 
to guarantee the end-user QoE are required.  

In parallel, software applications and electronic devices evolve rapidly. Smart-
devices such as mobile phones are able to provide terminal-centric information thanks 
to the large number of integrated sensors (accelerometers, barometers, GPS, etc.) and 
applications. Others like surveillance cameras provide an overview of a place (e.g., 
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number of people in a room or restaurant). All of them are able to collect context 
information in real time and share it with the mobile network with low delay thanks to 
the high-speed communication infrastructures (optical-fiber, xDSL, etc.). In this sense, 
this context information from sources out of the mobile networks could provide 
additional valuable information to SON mechanisms beyond traditional network 
indicators (i.e., alarms, counters, etc.). Some early studies focused on context-aware 
SON algorithms are [18] [19] [20] [21]. 

 

1.2 Preliminaries 

This PhD thesis has been developed within the Ingeniería de Comunicaciones 
research group (GIC, TIC-102), in the framework of four research lines.  

Firstly, the main project supporting this PhD thesis was the MONOLOC project 
[22]. MONOLOC has focused on the development of an advanced platform for the 
management of mobile and next-generation heterogeneous networks with indoor user 
positioning. The project’s consortium was composed by leading members of the mobile 
communication industry: Alcatel-Lucent and Grupo Innovati; and academia: University 
of Málaga (UMA), Universidad Carlos III de Madrid (UC3M) y Universidad 
Politécnica de Madrid (UPM).  

The project provided an innovative indoor solution based on the combination of 
user positioning calculation, self-management of small cells and location-based 
applications. Its aim was to identify and develop tracking techniques especially for new 
mobile technologies and use them to the dynamic self-management of the network, 
being this able to auto-configure, optimize and heal itself. In addition, location-based 
applications were studied and deployed in live scenarios. In this context, strong and 
reliable network architectures were developed in order to assure the support to these 
specifications. 

Within MONOLOC project, UMA was responsible for defining the system 
architecture and for devising location-based SON mechanisms. 

Secondly, the GIC has an steady collaboration with a french partner: École 
Supérieure d'Ingénieurs en Informatique et Génie des Télécommunications 
(ESIGETEL). In this framework, a professor from ESIGETEL has done several stays 
at UMA and this PhD candidate has also visited ESIGETEL. The result is a joint 
research on indoor RFID-based positioning systems.   

Thirdly, the research in this PhD thesis was also part of a project called “Técnicas 
adaptativas de gestión de recurso radio en redes B3G”, funded by Junta de Andalucía 
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(Proyectos de Investigación de Excelencia), which is related to the development of 
novel self-optimization techniques, especially focused on the application of 
reinforcement learning techniques to Mobility Load Balancing and Mobility Robustness 
Optimization. 

Finally, this PhD thesis has also been related to a project called “Gestión integral 
avanzada de funciones SON (Self-Organizing Networks) para redes móviles futuras”, 
funded by Junta de Andalucía (Proyectos de Investigación de Excelencia), which aims 
to design advanced coordinated SON mechanisms. 

 

1.3 Research objectives 

The aim of this PhD thesis is the design and development of novel SON 
mechanisms for open access femtocell mobile networks in commercial and corporate 
indoor scenarios, focusing on the mobility load balancing (MLB) use case. This means, 
the implementation of algorithms to offload temporary overloaded femtocells to low-
loaded femtocells due to the high concentration of users in temporal and spatial 
domain, avoiding slow adaptive processes. Additionally, some of these methods would 
be supported by context information in order to improve the network performance. 

 

 

Figure 1.1: Research lines. 

 
To accomplish these goals, three main research lines are studied: 1) a framework 

and architecture for commercial and corporate environments to integrate context data 
into the mobile network, 2) a context source focused on the provisioning of indoor 
positioning and 3) MLB techniques to solve temporary and focused network congestion 
issues in open access femtocell networks (visual description in Figure 1.1). 
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Initially, a framework for context-aware SON systems is proposed for commercial 
and corporate small cell networks. This framework is the base for the implementation 
of an OAM architecture which integrates and manages context data. It also supports 
the management of the SON mechanisms. Here, the main objectives are:  

1. To propose a context-aware SON framework to integrate context data into SON 
systems. 

2. To design an OAM architecture to support context-aware SON systems at 
commercial and corporate small cell networks. 

Secondly, an RFID-based (Radio Frequency IDentification) indoor positioning 
system is designed as a context source. The position of the terminals is an example of 
context information that could be supplied to the SON system to improve its 
performance. Note that the performance of the SON system would be affected by the 
accuracy of the indoor positioning system. Here, the main objectives are:  

1. To study RFID-based techniques for fusion methods when having multiple 
antennas in the receiver. 

2. To assess the trade-off between the number of active tags and the number of 
antennas in the receiver. 

3. To study techniques for integrating cellular technology information into the 
RFID-based indoor positioning system. 

4. To carry out a radio frequency measurement campaign analyzing both RFID 
and cellular signals. 

Finally, context-aware MLB mechanisms are designed to move terminals from 
overloaded cells to low-loaded cells. These methods study the singularities of 
femtocells, the characteristics of indoor environments and the mobility pattern of 
indoor terminals to achieve their goals. For that purpose, the femtocell transmission 
power is adjusted in order to force the handover of a terminal from its serving 
femtocell to a neighboring femtocell. Here, the main objectives are:  

1. To design novel SON mechanisms for offloading overloaded open access 
femtocells at commercial and corporate indoor environments. 

2. To mitigate temporal and focused overloaded situations at commercial and 
corporate indoor scenarios due to the high concentration of users in temporal 
and spatial domain. 
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3. To integrate context-aware data into SON algorithms and to assess the benefits 
of processing that information. 

4. To evaluate the impact of indoor positioning system accuracy on location-based 
SON algorithms. 

The evaluation of these systems and methods are demonstrated and assessed in a 
simulator and in a real testbed.  

 

1.4 Document structure 

The organization of this PhD thesis is depicted in Figure 1.2. The first chapter 
corresponds to this introduction. Chapter 2 provides a brief description of the required 
technical background to follow the rest of the chapters. This part comprises an 
introduction to the LTE architecture, the SON paradigm, femtocells and context 
information. The relationship between each topic is also covered. 

 

 

Figure 1.2: Organization of chapters. 

 
Chapter 3 proposes to apply the context-awareness concept to SON mechanisms. 

Firstly, the context-awareness in SON is introduced. Then, the related work and 
problem description of this topic are presented. Afterwards, a framework for context-
aware SON in indoor environments is proposed. This framework is supported by the 
designed OAM architecture and the evaluation of a specific use case. Finally, the 
conclusions and perspectives of this chapter are detailed. 
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Chapter 4 presents an indoor positioning system as a possible context source for 
context-aware SON systems. Firstly, this chapter introduces a review of the state-of-
the-art regarding indoor positioning systems. Then, the problem description is 
formulated. Afterwards, the proposed indoor positioning techniques based on multi-
antenna RFID system and mobile cellular signal are described. Subsequently, the 
accuracy of these techniques is evaluated in both simulated and real scenarios. Finally, 
this chapter includes the conclusions of the study. Additionally, this chapter refers to 
Appendix A and Appendix B where the characterization and the signal assessment of 
RFID and cellular technologies are carried out, respectively. 

Chapter 5 develops MLB mechanisms for commercial and corporate LTE femtocells 
with open access but they could be also adapted to other cellular technologies (UMTS 
or GSM). Firstly, it introduces MLB use case and the state-of-the-art. Then, it depicts 
the problem description. Afterwards, MLB methods are designed focusing on femtocell 
characteristics and context information, in particular the position of the terminals. 
Subsequently, these systems are evaluated in both a dynamic LTE system-level 
simulator and in a field-trial. Finally, the conclusions of these methods are discussed. 
Additionally, this chapter refers to Appendix C where a description of a fuzzy logic 
controller (FLC) is detailed. 

Chapter 6 summarizes the main conclusions of this research, proposes future lines 
of action and lists the publications supporting this PhD thesis. 

To conclude, Appendix D includes a summary of this PhD thesis in Spanish. 
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Chapter 2 

2 Technical background 
 

 

This chapter introduces a brief description of the required technical background to 
follow the rest of the chapters. 

The structure of this chapter is as follows: Section 2.1 describes the main 
characteristics of the LTE standard. Section 2.2 introduces Self-Organizing Networks 
(SON). Section 2.3 presents femtocells and the importance of SON for femtocells. 
Section 2.4 proposes the concept of context information, focusing on indoor positioning 
and its importance for SON mechanisms. Finally, Section 2.5 includes the conclusions 
of this chapter. 

 

2.1 Overview of the LTE standard 

The LTE standard is defined by the 3GPP (3rd Generation Partnership Project) 
and it is specified in its Release 8 document series, with minor enhancements described 
in Release 9. An overview of the LTE standard is briefly described in this subsection 
with the aim of providing the main information regarding the following chapters. 

The high-level network architecture of a mobile cellular network is comprised of 
three main parts: 

- Terminal: It is any device used for an end-user communication. It connects to 
the radio access network. In the LTE standard, this element is referred as User 
Equipment (UE). 

- Radio Access Network (RAN): It implements a radio access technology 
and provides connection between the terminals and the core network. In the 
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LTE standard, this element is known as Evolved UMTS Terrestrial Radio 
Access Network (E-UTRAN). 

- Core Network: It is the central part of the network, providing the main 
functionalities to the mobile cellular network: access control, mobility 
management, etc. In the LTE standard, this element is called Evolved Packet 
Core (EPC). 

The LTE standard aims to provide high data-rates, low latency, low power 
consumption, spectral flexibility and reduced operators’ expenditures [23]. The network 
architecture supports only packet switching (IP-based network) for any service and 
significantly reduces latency compared to the network architecture of 3G (third 
generation) [24]. The LTE network comprises the infrastructure of E-UTRAN and 
EPC, also known as Evolved Packet System (EPS). 

 

 

Figure 2.1: 3GPP LTE architecture [25]. 

 
Figure 2.1 illustrates the main parts of the LTE network, as well as its elements 

and interfaces:  

- eNodeB (eNB): The evolved base station is the only component between UE 
and EPC. It sends and receives radio transmissions from UE and controls the 
low-level operations by signaling messages.  

- Mobility Management Entity (MME): This element is the main entity of 
the control plane. It controls the high-level operations such as the radio access 
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bearers and the connection between the UE and the network. Each MME 
manages a group of eNBs and UEs. 

- Serving Gateway (S-GW): This element is the main entity of the user 
plane. It forwards user data between the E-UTRAN and the PDN Gateway (P-
GW). It is the reference component of each UE in the EPC when it moves 
between eNBs (inter-eNB handover and inter-RAT handover). 

- Home Subscriber Server (HSS): This component provides user 
authentication information and user profiles to the MME. 

- Policy and Charging Rules Function (PCRF): It makes policy decision 
and provides the QoS (Quality of Service) and charging rules to the P-GW. 

- Packet Data Network Gateway (P-GW): This component provides the 
communication with external networks. 

 

 

Figure 2.2: 3GPP management reference model [26]. 

 
Regarding the management operations, 3GPP defines OAM levels to implement 

these functionalities [26]. These levels are illustrated in Figure 2.2 and described below: 

- Network Element (NE): At this level, each element (NE) is defined to 
manage one or more eNB. 

- Domain Manager (DM): The elements (DMs) of this layer are concerned 
with managing NEs. 
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- Network Manager (NM): This level connects via open interfaces systems 
from other vendors. 

The LTE air interface supports both Time-Division Duplex (TDD) and Frequency-
Division Duplex (FDD) modes. A particular frame structure is defined for each one. 
Downlink and uplink transmission are based on Orthogonal Frequency Division 
Multiple Access (OFDMA) and Single-Carrier Frequency Division Multiple Access 
(SC-FDMA), respectively. These schemes use Orthogonal Frequency Division 
Multiplexing (OFDM) to encode multiple carrier frequencies. OFDM splits the 
available spectrum into several narrowband channels referred to as subcarriers. 

 
Table 2.1: LTE summary. 

Parameter Description 
Frequency Range FDD bands and TDD bands  
Duplexing FDD, TDD, half-duplex FDD 
Latency 5 ms round trip 
Mobility 350 km/h 
Channel Bandwidth 1.4, 3, 5, 10, 15 and 20 MHz 
Radio Resources 6, 15, 25, 50, 75, 100 PRBs 

Modulation Schemes 
UL: QPSK, 16-QAM, 64-QAM (optional) 
DL: QPSK, 16-QAM, 64-QAM 

Access Schemes 
UL: SC-FDMA supports 50 Mbps (20 MHz) 
DL: OFDM supports 100 Mbps (20 MHz) 

Multiple Antenna Scheme 
2x2 MIMO 
4x4 MIMO 

Effective Peak Data Rates 
UL: 75 Mbps (4x4 MIMO, 20 MHz) 
DL: 300 Mbps (4x4 MIMO, 20 MHz) 

 

OFDMA and SC-FDMA access schemes support flexible bandwidths. Channel 
bandwidths are variable, from 1.4 to 20 MHz with subcarrier spacing of 15 kHz. The 
smallest radio resource that the scheduler can assign to a user is called Physical 
Resource Block (PRB). A PRB occupies 0.5 ms in the time domain and 180 kHz in the 
frequency domain [27] and comprises 12 subcarriers at 15 kHz spacing. Conventional 
modulation schemes: QPSK (Quadrature Phase Shift Keying), 16-QAM (Quadrature 
Amplitude Modulation) and 64-QAM modulate each subcarrier at low symbol rate. 
The combination of these subcarriers creates an OFDM symbol. This technology 
supports high-peak data rates up to 346 Mbps in the downlink and 85.5 Mbps in the 
uplink at 20 MHz and 4x4 MIMO. However, a percentage of these ratios are used for 
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overhead (e.g., synchronization signals, pilot overhead, etc.). This leads to effective 
data rate of about 300 Mbps and 75 Mbps, respectively [28]. 

A summary of the LTE technology is shown in Table 2.1. Further details and 
specifications about this technology could be easily read in the literature [29]. 

 

2.2 Self-Organizing Networks 

The continuous advances in mobile technologies and personal devices (e.g., 
smartphones and tablets) have led to the deployment of HCNs to support the extreme 
traffic demand of new services. HCNs comprise different RATs and several cell sizes 
(e.g., macrocell, microcells, picocell, femtocells, etc.), resulting in a non-easily 
manageable complex mobile network infrastructure. In this sense, Self-Organizing 
Networks (SON) have been identified by the 3GPP in Release 8 [2] and the Next 
Generation Mobile Networks (NGMN) [3] as a key feature to intelligently automate 
network operation, administration and management procedures in future mobile 
networks. The use of SON techniques [8] [9] aims to reduce OPEX and CAPEX by: 

1. reducing the level of human intervention in network design, configuration and 
operations. 

2. optimizing the use of available resources in the network. 

3. reducing the number of human errors. 

For that purpose, several self-x functionalities have been defined by 3GPP and 
NGMN to self-manage the network resources: 

• Self-configuration: to automate network configuration and planning of newly 
deployed base stations. The new base stations are able to configure itself the 
Physical Cell Identity (PCI), transmission power, transmission frequency, etc. 

• Self-optimization: to automatically tune the network parameters (e.g., 
antenna tilt, handover parameters, etc.) of a deployed mobile cellular 
infrastructure for obtaining the best network configuration and performance 
over time. This function includes optimization of handover, capacity, coverage 
and interference. 

• Self-healing: to automatically detect, identify, compensate and recover failures 
of a deployed mobile cellular infrastructure. 
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These SON functions could be located at different OAM levels in the 3GPP OAM 
architecture as Figure 2.3 shows. They could be either centralized or de-centralized. 

 

 

Figure 2.3: Location of SON functions in the 3GPP OAM architecture [8] [26]. 

 
Self-optimization is one of the most important functionalities in SON because it 

ensures the network operates to its best level of efficiency once the base stations have 
been deployed. Since this PhD thesis is focused on self-optimization, the following 
section will further describe this function. 

 

2.2.1 Self-optimization 

Self-optimization is necessary due to the changes that the environment around the 
base station might suffer once it is installed and well-configured. Some of these changes 
are related to: 

- Changes in deployments: Modifications in a base station could affect the others. 
New base stations could be integrated in the network, a base station could be 
optimized, etc.  

- Changes in traffic patterns: The concentrations of users evolve over time. Some 
examples could be beaches on summer season, sporting events, etc. 

- Changes in propagation characteristics: This could arise or have a significant 
effect when new buildings are erected or demolished, leaves from trees fall in 
autumn, etc. 

The main self-optimization use cases are the following [2] [30]: 
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• Coverage and capacity optimization: parameters such as transmitter 
power levels and antenna tilts are adapted to maximize coverage and 
minimizing interference levels. 

• Energy saving: operators aim to reduce the power consumption as well as 
carbon dioxide emissions. Hence, there are a number of option to accomplish 
this goal such as decreasing active carries for off-peak times, switching cells to 
sleep mode, etc. 

• Mobility robustness optimization: operators are interested in robust 
mobility and handovers within the mobile network to avoid the disruption of 
the service. It would minimize the number of unnecessary handovers, dropped 
calls, etc. 

• Mobility load balancing: congested cells should transfer calls to other cells 
with spare resources. Antenna tilts, handover margins and transmitter power 
levels are the main adapted parameters. 

 

This PhD thesis is focused on the Mobility Load Balancing (MLB) use case. A 
graphical explanation of this functionality is depicted in Figure 2.4. Left image shows 
an overloaded situation. Here, left cell suffers congestion which decreases network 
performance and increases the number of unsatisfied users. Conversely, adjacent cells 
are less loaded in the network. Under this situation, as the right image illustrates, 
MLB forces users from its serving cell (left cell) to handover to target cells (right top 
cell) by changing configuration management parameters (e.g., transmitter power level 
of serving cell or handover margins from serving cell to target cell).  

 

 

Figure 2.4: Mobility Load Balancing use case. 
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A simple solution to support these congested scenarios could be to plan the 
network to offer the maximum expected resources all the time but it would largely 
increase CAPEX. Nevertheless, by applying MLB in the network, this temporal 
congestion would be overcome without further investments. 

 

2.3 Femtocells 

Nowadays, most cellular traffic is generated indoors (e.g., home, work or shopping 
malls), where there is often a lack of coverage or insufficient QoS [10]. In these cases, 
network operators are offering small cells to overcome the indoor issues, being 
femtocells the main deployed base stations.  

The deployment of femtocell networks provides significant benefits to network 
operators and their clients. The most common benefits result in: 

- reduction of operational costs. 
- potential macrocell offloading gain. 
- improvement of the end-user QoE. 
- terminals save battery and increase lifetime. 

However, the smooth integration and maintenance of femtocells into classical 
macrocell networks is an important challenge for operators. 

 

2.3.1 Characteristics 

Femtocells are simple and small versions of standard macrocells, manufactured to 
be deployed at indoor environments. These low-cost and low-power devices cover areas 
of several meters, work in the licensed frequency band and are under operator 
management. Additionally, femtocells are connected to the operator’s network by a 
broadband connection, i.e., through client’s broadband backhaul (e.g., cable or xDSL) 
as Figure 2.5 shows. Thanks to this singularity, they are plug and play devices and 
operators offer unplanned deployments, which means, the client is free to locate the 
femtocell anywhere. For this reason, default femtocell transmission power is the 
maximum transmission power. 

Another important characteristic of femtocells is the control access (see Figure 2.5). 
The accessibility could be close, i.e., access is restricted to subscribers. The Closed 
Subscriber Group (CSG) is in charge of registering those specific users. Home 
femtocells are an example of close access, as they are deployed for private usage. In an 
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open access scenario (e.g., public buildings), any terminal could be connected to the 
femtocell without any restriction, like a macrocell. Enterprise femtocells are usually 
open access. Hybrid access is also supported. 

 

 

Figure 2.5: Femtocell scenario. 

 
Since femtocells operate in residential or enterprise spaces and users may move 

between indoor and outdoor scenarios, a handover process is required between 
macrocells and femtocells to keep the service alive. 

Femtocell manufacturers have mainly developed two types of femtocells. Focused 
on home environments, the datasheet in [31] presents a femtocell with a baseband 
capacity of maximum 4 simultaneous connected users (voice call or data session). 
Thinking in crowed indoor scenarios such as offices or shopping centers, the datasheet 
in [32] provides a solution up to 64 (i.e., 8, 16, 32 or 64 users) active users in the 
femtocell. 

Based on the maximum capacity of the femtocell, the Admission Control (AC) 
algorithm is in charge of managing the access of new users. The AC algorithms are not 
standardized, i.e., different vendors would run different AC schemes. Then, the AC 
could reject those attempt connections once the maximum number of connected users 
is reached or drop specific connected users (e.g., per service, time connected, etc.) even 
if there are free radio resources. Note that this limitation is independent of the 
Scheduler, the availability of radio resources or the circuit/packet-switched channel. 
Additionally, it is also beyond the cellular technology (GSM, UMTS or LTE). For 
example, the 3G femtocell in [31] supports four devices at the same time. 
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Figure 2.6: Persistent allocation for VoLTE. 

 
Focusing on the LTE technology (IP-based technology), the resources could be 

scheduled and allocated in the next frame if the current frame is full (depending on 
their priority). However, VoLTE service is special. Semipersistent Scheduling (SPS) 
[33] would be in charge of managing and allocating VoLTE traffic. In this sense, the 
mechanism could assign predefined chunk of radio resources for VoLTE users with 
interval of 20ms (see Figure 2.6). It would decrease control channel overhead, reduce 
jitter and increase the QoS. Nevertheless, before scheduling a new connection, it must 
be accepted by the AC scheme and, as previously explained, that new user is blocked 
if the maximum femtocell capacity is reached (normally from 2 to 64 users). Therefore, 
even if there are available radio resources in the current frame or in the following one, 
that new user would be rejected by the AC. Note that other AC schemes could accept 
this user but an active user is dropped or tried to be handover to another cell. As an 
example, in [34] the maximum number of active users is restricted to 8 users: either 
VoLTE users or other data bearer per QCI (Quality Channel Indicator). 

 

2.3.2 LTE architecture 

The 3GPP defines a base station as eNB while femtocells are defined as Home eNB 
(HeNB). HeNB is integrated in the LTE architecture as a new NE. The functions 
supported by the HeNB shall be the same as those supported by an eNB (with the 
possible exception of NAS Node Selection Function - NNSF) and the procedures run 
between a HeNB and the EPC shall be the same as those between an eNB and the 
EPC. 

The E-UTRAN architecture may deploy a Home eNB Gateway (HeNB GW) to 
allow the S1 interface between the HeNB and the EPC to scale to support a large 
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number of HeNBs. The HeNB GW serves as a concentrator for the control plane, 
specifically the S1-MME interface. The S1-U interface from the HeNB may be 
terminated at the HeNB GW, or a direct logical user plane connection between HeNB 
and S-GW may be used. This logical architecture is shown in Figure 2.7. 

 

 

Figure 2.7: E-UTRAN HeNB logical architecture [24]. 

 
The E-UTRAN architecture with deployed HeNB and HeNB GW is depicted in 

Figure 2.8. The HeNB GW appears to the MME as an eNB. The HeNB GW appears 
to the HeNB as an MME. The S1 interface between the HeNB and the EPC is the 
same whether the HeNB is connected to the EPC via a HeNB GW or not. Release 9 
does not support X2 connectivity of HeNBs. However, X2 connectivity of HeNBs is 
supported in LTE-Advance (Release 10 [24]). 

 

 

Figure 2.8: Overall E-UTRAN architecture with deployed HeNB GW [24]. 

 



 
20  Technical background 

2.3.3 SON for femtocells 

SON techniques play an important role at commercial and corporate indoor 
scenarios. Despite some classical SON mechanisms could be implemented indoors, their 
performance could be degraded compared to their application on macrocell scenarios. 
The main reasons are the particularities of femtocells, the characteristics of indoor 
scenarios and the influence of users’ mobility pattern: 

1) Particularities of femtocells: 

a) The number of simultaneous users connected to a femtocell is very restricted 
in comparison to macrocell stations. In this way, femtocell equipment 
reduces the number of simultaneous users (from 2 to 64 users). It must be 
taken into account for the application of SON mechanisms. 

b) The deployment of femtocells is normally unplanned, contrary to the 
deployment of macrocells. As a consequence, some femtocells can be highly 
loaded while others are low loaded. In this sense, SON mechanisms would 
ensure a good cellular network performance.  

c) As low-power base stations, the coverage area of femtocells is short-range. 
That means, depending on the users’ mobility pattern, users could easily 
handover several times from one femtocell to another. That increases the 
network signaling overhead and femtocell congestions may occur. Therefore, 
the time to trigger SON methods should be as fast as possible to detect and 
solve these situations. 

d) Femtocells are normally placed at fixed positions. However, the customer 
could freely (i.e., without operator’s approval) and easily move a femtocell 
to another place as a plug and play device. By moving the femtocell, the 
customer might intend to solve specific issues, such as a lack of coverage or 
low throughput in an area, but other issues could arise with this change. In 
these cases, SON mechanisms are required to ensure a good network 
performance by automatically adjusting femtocells configuration parameters. 

2) Characteristics of indoor environments: 

a) Indoor radio channel conditions suffer continuous changes due to multi-path 
reflections, wall obstacles, number of people, etc. Those situations are a 
challenge for SON mechanisms. 

b) Occasional events or unpredictable occurrences provoke unexpected temporal 
overload situations in surrounded femtocells, which could negatively affect 
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network performance. For example, restaurant zones would increase the 
traffic at launch/dinner time while sales period would create occasional 
hotspots in shops. In all these situations, the femtocell in charge of serving 
that area would be overloaded. 

c) Due to the geometry of indoor environments, a tridimensional deployment of 
femtocells on the different stages of a buildings, airports, shopping malls, 
etc., is often required.  

Based on this, classical SON mechanisms at indoor environments should take into 
account these characteristics before their implementation in femtocell networks. 
However, the design of new SON mechanisms for indoors would provide optimal 
solutions for these networks. For example, from the point of view of MLB, the number 
of active users at each femtocell should be analyzed in addition to the availability of 
radio resources to allocate new connections.   

 

2.4 Context information 

A new concept is emerging thanks to the ubiquity and quality of electronic devices 
with stable Internet connections: context-awareness. Location, activity, time and 
identity are the primary context types for characterizing a situation of a particular 
entity. 

 
“Context is any information that can be used to characterize the situation of 
an entity. An entity is a person, place or object that is considered relevant 
to the interaction between a user and an application, including the user and 
applications themselves [35]”. 

 
Nowadays, smart-devices like smartphones integrate many radio frequency (RF) 

technologies as WiFi, Bluetooth, NFC and even UWB, in addition to the classical 
cellular technologies: GSM, UMTS or LTE. Furthermore, they are supported by 
dozens of integrated sensors like compass, barometer, gyroscope, GPS, etc. Besides, 
other systems like surveillance cameras are able to characterize an element or scenario. 
Valuable information about the people distribution, their position, the weather, etc. 
could be obtained through a digital image processing. Finally, the imminent 
development of apps (applications) in smartphones and other smart-devices achieve 
specific information of users such as the calendar events, the battery level of the 



 
22  Technical background 

terminal, the age, etc. or particular information about the environment such as the 
temperature, etc. 

 

2.4.1 Indoor positioning systems 

One of the key challenges for the mobile market is to find killer applications for the 
new terminals and data plans in order to increase service providers, manufacturers and 
application developers’ revenues. In this field, Location-based Services (LBS) will 
support new applications on several fields: health-care, advertising, emergency-
response, etc. Most suitable scenarios for LBS are indoor areas (e.g., airports, 
hospitals, malls, etc.) given the large concentration of users in these environments. 
Based on this, the challenging deployment of indoor positioning techniques is a hot 
topic. 

In this sense, smartphones could be well-located (position error below one meter) 
thanks to the analysis of wireless technologies like Infrared Laser, UWB, etc. The 
drawback is that these kinds of systems are very expensive due to their low position 
error and high accuracy. Nevertheless, systems based on the analysis of the received 
signal strength indicator (RSSI) of wireless technologies such as RFID or WiFi [36] or 
cellular technologies [37] could reduce these expenses although the location accuracy 
would be degraded (position error of few meters). Additionally, the synergy of those 
technologies and the wide variety of integrated sensors into the smartphones could 
enhance the performance of these positioning systems in terms of location accuracy 
[38].  

 

2.4.2 Context-aware SON 

SON mechanisms are based on the analysis of the mobile network alarms, counters 
and metrics (e.g., handover failure rate). Indoor environments present specific 
characteristics (e.g., high level of coverage overlapping, rapid performance changes, 
user distribution variability, etc.) which make these SON methods solely based on the 
analysis of those network indicators, prone to take a long time to get the best 
configuration parameters.  

Context-awareness provides profitable information about the actual status of the 
environment such as smartphones position, mobility patterns, etc., which properly 
managed could help SON mechanism to speed up its convergence time, to get the 
optimal configuration parameters, to improve the network performance, etc. 
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2.5 Conclusions 

LTE provides reduced latency, increased peak data rates and scalable bandwidth 
while backwards compatibility with legacy mobile cellular technologies. Additionally, 
SON paradigm provides these networks with intelligent and autonomous procedures to 
automatically overcome network degradations and failures. Indoor environments with 
femtocells deployments are one of the most challenging scenarios to be managed. Here, 
SON mechanisms play a key role to guarantee coverage and capacity while ensuring 
the end-user QoE. These SON mechanisms are only based on the analysis of the 
network performance indicators. However, the expansion of smart-devices, systems and 
applications could provide valuable additional information from external sources to the 
network management layers, being important and useful for SON mechanisms. 
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Chapter 3 

3 Context-aware SON framework 
 

 

This chapter proposes to apply the context-awareness concept to SON. Context 
information provides valuable additional data to enhance the performance of SON 
mechanisms. 

The structure of this chapter is as follows: Section 3.1 introduces the context-
awareness concept in SON. Section 3.2 details the related work. Section 3.3 presents 
the problem description. Section 3.4 describes a framework for context-aware SON at 
indoor environments. It is supported by the design of an OAM architecture and a 
particular self-optimization use case. Section 3.5 evaluates the benefits of the proposed 
approach. Finally, Section 3.6 includes the conclusions and perspectives of this 
chapter. 

 

3.1 Introduction 

Current cellular networks are HCNs, comprising several RATs, cell sizes and 
frequencies. In this context, macrocells and incoming small cells coexist in the same 
radio environment. Small cells may support the growth in mobile data traffic by 
offloading macrocells. However, the deployment of this kind of cells also brings a 
number of challenges to mobile network management. These difficulties must be 
addressed to maintain a consistent QoE in the cellular infrastructure, making SON 
concept an important part of the recent mobile network deployments. 

In parallel, electronics and software applications evolve rapidly, and devices, 
systems, and applications are everywhere. Mobile devices offer widespread access to 
instantaneous information about what is happening in the world and, furthermore, 
information or estimations about what is going to happen in the next minutes, hours, 
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or days. Devices like smartphones, systems like surveillance cameras, or applications 
like social networks can provide these additional valuable data to SON mechanisms. 
Advanced SON algorithms based on this context information could be the first step for 
a new approach in automatic and expanded mobile network management, enhancing 
network performance.  

The main contributions of this chapter are:  

• The description of a context-aware SON framework to integrate context data 
from smart-devices, systems or applications into SON systems. 

• The design of an OAM architecture to support context-aware SON systems at 
commercial and corporate small cell networks. 

Finally, a SON strategy, in particular the mobility load balancing (MLB) use case, 
will evaluate the capabilities of the proposed framework in a simulated scenario. 

 

3.2 Related work 

SON mechanisms are widespread in cellular network deployments and advanced 
SON algorithms are proposed in the literature.  

From the architectural perspectives, few works addressed the requirements to take 
into account the integration of context information into the OAM layers. The work in 
[39] defined a high-level particularization of the possible entities of a context-aware 
system. The authors in [40] introduced a high level logic framework for intelligent 
service adaptation to user context-awareness in next generation networks. However, 
the proposed architectures did not refer on how to apply context information to mobile 
communications, SON or indoor scenarios. Furthermore, no specific mechanisms were 
defined. 

Regarding the context-aware SON mechanisms, few works addressed the use of 
context information, in particular for the indoor cases [41]. The authors in [19] 
proposed a framework for base stations configuration and deployment based on the 
network topology, state, environment and operator’s inputs. The work in [21] 
developed a context-aware decision algorithm to improve the interworking between 
LTE and WiFi wireless technologies. It considered multiple context variables like 
terminal type, battery, velocity, etc. This efficient mechanism was integrated within 
the ANDSF (Access Network Discovery and Selection Function) server. Additionally, 
the authors in [39] presented a possible framework to support context information for 
public safety networks in LTE. Particularly, it sketched the elements for context-aware 
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radio resource management (RRM) in a very high level. Other works made use of the 
position of terminals as context information. In this respect, reference [20] proposed 
self-optimization of inter-RAT handover parameters supported by location information 
in macrocell scenarios. Conversely, BeFEMTO project proposed a local location 
manager in femtocells networks [42], but it only presented the conceptual design, 
without any integration with SON algorithms. 

 

3.3 Problem description 

In SON, especially in self-optimization, the periodicity to run the mechanisms is 
very important to quickly adapt radio network parameters to variations of the radio 
channel conditions in a short period. For this reason, recent OAM architectures 
present a distributed model (as proposed in BeFEMTO’s project [42] for femtocell 
deployments), and tend to place SON functions in low layers (e.g., NEs). In that way, 
a fast analysis of the radio changes can be made and network can be configured to 
ensure good end-user experience and network performance. Nevertheless, depending on 
the inputs of these functions, they might not fulfil timing requirements expected by 
the operator or the network performance might be further optimized and enhanced. In 
this scenario, context-awareness becomes a solution to overcome these limitations.  

The objective of the proposed context-aware SON framework is the integration of 
context information into OAM layers. For that purpose, the design of a local system 
with OAM functionalities is required. Focusing on the MLB use case, main topic of 
this PhD thesis, the proposed approach would, initially, increase the users’ satisfaction 
(e.g., by reducing accessibility issues) at commercial or corporate scenarios when radio 
and environment conditions change. Secondly, it would reduce the time the SON 
mechanisms need to converge to the optimal solution. 

To measure the first objective, a utility function based on the dissatisfaction of 
users (𝑈𝑈) has been selected [16]. The 𝑈𝑈 is interpreted as a combination of Call 
Blocking Ratio (𝐶𝐶𝐶) and Outage Ratio (𝑂𝑂), 

 
𝑈𝑈 =  𝐶𝐶𝐶 + (1 − 𝐶𝐶𝐶) ∙ 𝑂𝑂, (3.1) 

 
where 𝐶𝐶𝐶 is defined as the ratio of the number of blocked calls (𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐) to the 
number of calls that attempt to access the network (𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐). 𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐 is 
the number of accepted calls: 
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𝐶𝐶𝐶 =  
𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐

𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
=

𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐

𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐  +  𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
. (3.2) 

 
𝑂𝑂 is defined as the ratio of unserved connection time due to a bad Signal to 

Interference-plus-Noise Ratio (SINR) of users (𝑂𝑂𝑞) or a temporary lack of network 
resources (𝑂𝑂𝑠), i.e., 𝑂𝑂 =  𝑂𝑂𝑞 + 𝑂𝑂𝑠. Low values of UR are desirable. 

To analyze the second objective, an indicator, 𝑡𝑜𝑜𝑜, has been defined to measure the 
time the SON algorithms need to reach the permanent regime (see Figure 3.9). Low 
values of 𝑡𝑜𝑜𝑜 are desirable.  

 

3.4 Framework for context-aware SON 

This subsection describes the characteristics of the proposed framework for context-
aware SON in commercial and corporative indoor environments. It is supported by an 
OAM architecture and a particular self-optimization use case. 

 

3.4.1 Framework characteristics 

Input parameters for SON algorithms are usually coming from the mobile network, 
such as KPIs (Key Performance Indicators), counters, etc. However, the automatic 
adaptation of applications, systems and devices to users’ context changes, provides 
useful external mobile network information, rarely included in SON mechanisms.  

Location, activity, time and identity are the primary context types for 
characterizing a situation of a particular entity. Context data is proposed as additional 
inputs for SON algorithms. Thus, the information about the status of a place, people 
or even things and devices in the mobile network environment can help to increase 
system capacity while the end-user QoE and network performance is improved. 

Other advantages of context information are, for example, the time span to acquire 
and share this information. The periodicity of monitoring network indicators for 
centralized OAM architectures is usually fifteen minutes, one hour or even one day, 
avoiding fast network adaptation. Although the development of distributed OAM 
architectures partially solve this time problem, external mobile network data might 
complement the lack of information in short periods and provide additional data. 

Another benefit is related to the prediction capabilities. Network configuration 
could be automatically prepared to an incoming situation such as a social event (e.g., 
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book signing event, etc.) that would decrease network performance due to the huge 
concentration of users connected to the same cell. 

This wide variety of information could be obtained from several sources as Figure 
3.1 shows, consolidating these data into the Context-Aware Module (CAM). The CAM 
collects and provides that context information to any network item. 

 

 

Figure 3.1: Context-aware module (CAM). 

 
All these information sources provide valuable data about current or future 

environment situations. Some of them send real-time information, whereas some others 
provide data to the CAM with a lower frequency. Some possible information sources 
are the following: 

• Personal devices: They are one of the most powerful sources in this field 
thanks to the heterogeneous features, such as accelerometers or compass. These 
sources could offer personal information about the users’ habits: activities, 
mobility patterns, etc. This information can be used in SON algorithms, e.g., to 
avoid coverage holes by adapting antenna tilt or transmit power level. 

• Positioning systems: Several novel positioning systems are being developed 
to locate users in indoor environments. Some SON applications based on this 
real-time position information could be related to energy saving, e.g., a small 
cell is turned off to save energy when no users are allocated close to its coverage 
area.  

• Social networks: Plenty of information is publicly shared in these networks 
(Twitter, Facebook, etc.), providing real-time data besides a prediction of what 
is going to happen in a certain place at a specific moment. For example, a 
celebrity is seen in a shopping center and a lot of people move there to take a 



 
30  Context-aware SON framework 

picture with him/her or ask for an autograph, provoking a huge concentration 
of users in a small area where most of them use their smartphones to share that 
moment in social networks. 

• Image/Video: Photographs or video images are collected from online photo-
sharing or video-sharing as Instagram, Youtube, etc., or from surveillance 
cameras installed on a specific place, providing information about its context. 
For example, images could provide valuable green context information if SON 
algorithms turn off a small cell when no one is close to it, saving useless energy. 
These systems usually take some time to process all these data. 

• Operator: An operator manually introduces data into the CAM, about what 
he or she is monitoring. 

• Other sources: New smart and intelligent devices, such as drones, or even 
current context information that is not taken into account in current state-of-
the-art SON algorithms, like weather, could be also very helpful in the future in 
this kind of systems.  

Notice that several sources can provide the same type of final information, e.g., 
number of people in an area. This redundancy is very important in case of CAM 
connection loss or access restrictions to any of these sources.  

As mentioned before, some of these sources provide automatic and instantaneous 
information to the CAM while some others need some time to collect and send it to 
the CAM. Depending on the time required for data collection and transfer, the 
context-aware SON algorithms will run at set intervals as follows: 

• 1 hour: Context data is supplied to the CAM every hour, e.g., by an operator. 

• 30 minutes: Image/video processing systems need time to get the pictures. 

• 15 minutes: Sophisticated image/video processing systems are faster. 

• 5 minutes: Personal devices could have delays in the information delivery. 

• 1 minute: More accurate and online updating technologies could reduce this 
time to less than a minute. For example, positioning systems, social networks, 
personal devices, etc. 

• Predictions: The information is proposed to the system once an event is 
programmed, for example in social networks or into a personal device calendar.   

The proposed framework could present some challenges in the communication with 
external sources: 
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• Signaling overhead: It depends on the communication protocols, the 
transmitted message and the context information. The transmitted message 
consists of attribute-value pairs (e.g., XML, JSON, etc.) to easily manage the 
information. The well-known Transmission Control Protocol (TCP) is in charge 
of transporting reliable data at reduced overhead. Also, more advanced (SCTP, 
DCCP, etc.) or simple (e.g., UDP) protocols could reduce even more the 
signaling cost. 
 

<index> 
<context> user_location 
<id> 3589870105 
<time> 1413124586 
<x> 14.2547 
<y> 85.6214 

<end> 
Figure 3.2: Example of context message. 

 
In order to provide an assessment of the cost, a preliminary message 

formatting is described to estimate and quantify the volume of data per message 
(see the example in Figure 3.2). This is a simple context message to provide the 
user location to the CAM. Each character is computed by 1 byte (there are 84 
characters on the message). Consequently, the transmitted message is composed 
by this context data (84 bytes) plus the communication headers (TCP+IP=40 
bytes). Therefore, for this kind of message, 124 bytes are transmitted from the 
external sources to the CAM. Mention that, any other message or 
communication protocol is also supported by the system (e.g., JSON). 

• Delay: The lack or delay in the information transmitted from the external 
sources would degrade the system performance as SON mechanisms will not 
properly work. However, the high speed of communication infrastructures (e.g., 
xDSL), the low signaling overhead and the redundancy of context information 
supplied to the system from multiple sources, could overcome this limitation.  

• Security: Most of the information supported to the CAM is public data, hence, 
no strategies or techniques of information security are mandatory. Nevertheless, 
the information from private sources or private data would be encrypted. 

Furthermore, it is crucial to confirm the veracity of the information against 
possible issues (e.g., malicious modification, delayed data, etc.), while the system shall 
be able to reject false or incomplete samples. In case the CAM is not able to do it, the 
context-aware SON methods might degrade the network performance. In that case, the 
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context-aware SON algorithms will be disabled to come back to conventional SON 
mechanisms (algorithms only use information from the mobile network). 

The location of the CAM could be in middle layers of the operator’s OAM 
architecture (e.g., DM) to reduce the signaling overhead. However, other solutions like 
NEs or indoor local mobile network management systems are possible at indoors. 

 

3.4.2 OAM architecture1 

Following the idea of indoor local mobile network management system, the design 
of a novel OAM architecture that interacts with the classical OAM layers is required. 
The proposed OAM architecture is defined by several interrelated entities, where 
different approaches can be adopted in order to establish its functional scheme: 
centralized, (where a unique entity is in charge of managing the rest of the elements); 
distributed (peer-to-peer); and hybrid. The proposed solution follows a hybrid scheme, 
a combination of the characteristics of centralized and distributed schemes. Here, some 
mechanisms are completely local while others require coordination among distributed 
entities. It allows easy reuse of classical centralized OAM architecture, while the 
implementation of distributed mechanisms is also supported.  

The 3GPP OAM architecture [26] is maintained, adding new capabilities, functions, 
entities and interfaces to it. The placement of SON functions in the standard OAM 
elements (see Figure 3.3 on the left: NM, DM and NE) follows a similar scheme to that 
presented in [8]. The functions involving a specific subnetwork can be implemented at 
the DM layer. For functions involving more than one subnetwork, they will reside on 
higher layers of the OAM hierarchy. Conversely, distributed SON functions would be 
placed at NEs (e.g., small cells).  

These levels at the OAM architecture chain are directly related to the time span 
for monitoring/configuration and also the level of abstraction over the network layers 
(see Table 3.1). However, even for the lowest layer standard centralized entity (DM), 
time spans (in the range of hours) are still large. Also, DM usually operates non-
overlapped subnetworks covering wide areas. Hence, a novel additional OAM 
functional block, the OAM Context-Aware System (OCAS), is proposed to support 
innovative context-based SON mechanisms. This new proposed centralized entity is 
implemented at the lowest levels of the OAM hierarchy, being in charge of managing 
the set of small cells of one specific indoor area.  

 
                                     

1 This work has been performed in collaboration with Sergio Fortes Rodríguez. 
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Table 3.1: Characteristics of 3GPP OAM layers [8]. 

 Task Parameter Abstraction Time Span 
NM Planning Vendor independent weeks/month 

EM/DM Network Operation Vendor independent/specific hours/days 
NE Element Configuration All parameters secs/mins 

 

3.4.2.1 Functional architecture 

The proposed OAM architecture is shown in Figure 3.3. The standard 3GPP OAM 
architecture is represented (left square) containing the standard NM, EM/DM and NE 
elements. These are connected to the OCAS by newly defined interfaces (see Section 
3.4.2.2 “Interface protocols”), which implements the following roles:  

• To register available context services (CSs) and obtains context information 
from them. 

• To implement context-aware SON functions. 

• To act as coordinator between the OAM elements of the mobile network, 
context-aware SON algorithms and CSs. It propagates the results of the 
context-aware SON algorithms to the OAM standard elements for their 
authorization to apply the decided commands in the network. Then, these 
commands may be applied through standard OAM elements or directly to the 
devices by the OCAS itself depending on the operator policies. 

Additionally, monitoring and reporting functions (M/R) can be incorporated into 
the UEs, so they can directly report to the OCAS information of the network status or 
their location. This M/R capability can be part of the context-based applications 
present in the terminals (e.g., navigation apps) or being implemented by means of 
directly invoking functionalities in the terminal API (Application Program Interface). 

The described OCAS roles are distributed in different functional elements, which 
allow a better insight into the defined functionality: 

• SON Algorithmic Unit (SAU) implements the local SON algorithms in the 
system. It can contain multiple interdependent SON functions for self-
configuration, self-optimization and self-healing. If multiple SON use cases are 
implemented, it would be also responsible for the proper coordination and 
trade-off between the different SON use cases and mechanisms by the SON 
Coordination Layer, being its particularities dependent of the specific use cases 
implemented. One benefit of the integration of multiple SON mechanism in the 
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SAU is that it supports the use of the same context sources (as well as network 
indicators/measures) for the multiple use cases implemented, reducing the 
possibility of collisions generated by using different information sources, as well 
as allowing a straightforward coordination between techniques. 

• Context Service Registering (CSR) is in charge of the incorporation and 
authentication of different sources of context information into the Registered 
Context Services Database. For a CS to be included, the main parameters for 
the information exchange with the OCAS have to be defined: IP address and 
format characteristics for the communication with the CS. These parameters 
have to be compiled in a set of profiles to be used by the Context Data 
Collector Unit (previously referred as CAM) in order to communicate with the 
different CSs available.  

• ACtuator Unit (ACU) configures the network elements with the new 
parameters calculated by the context-aware SON algorithms, directly or by the 
standard OAM pile through the OAM Coordination Unit.  

• Context Data Collector Unit (CDCU) gathers the information coming 
from the CSs or the terminals registered in the system. 

• MEasurement Unit (MEU) obtains information from the network elements, 
by direct network element connection or through standard OAM elements using 
the OAM Coordination Unit. It is also in charge of the possible acquisition of 
direct network measurements from the UEs (e.g., received power levels, etc.).  

• OAM Coordination Unit (OCU) serves as the interaction element between 
the OCAS and the OAM standard architecture. It translates the configuration 
orders coming from the ACU into commands for the operator’s OAM tools and 
it turns the OAM monitoring into a format usable by the MEU. Furthermore, it 
also supports the configuration of any of the OCAS functionalities by 
commands coming from the standard OAM architecture elements as well as by 
Local Network Manager Agents. 

• Local Network Manager Agent (LNMA) represents the specific operator 
or administrator that may be required to manage the OCAS. The LNMA will 
have two main capabilities: 

- It may register, via the CSR, new CSs to be used by the OCAS. 
- It may alter the policies and/or functionalities of the OCAS via the 

OCU. This capability should be restricted through the permissions 
defined in the Access Identities and Privileges Database to avoid 
erroneous/malicious access. 
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Figure 3.3: Proposed OAM architecture. 
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3.4.2.2 Interface protocols 

According to the proposed architecture, the new main OCAS block introduces self-
management at the local mobile network. Consequently, new interfaces, protocols and 
applications should be implemented in order to coordinate this system with the rest of 
the OAM architecture as well as to measure and modify network devices: 

• NM-OCAS and DM/EM-OCAS are used for the coordination between 
OCAS and the elements of the operator’s OAM core.  

• NE-OCAS exchanges monitoring and configuration messages between the 
small cells and the OCAS through three different interfaces: 

- NE-OCAS/MEU focuses on monitoring and providing information 
about counters, alarms, KPIs, etc. to the MEU. 

- NE-OCAS/ACU carries direct configuration commands or files to the 
NEs.  

- NE-OCAS/OCU transports both monitoring and configuration 
messages when these cannot be directly sent/received to/from the NE by 
the OCAS blocks. 

• CS-OCAS interfaces communicate information from the CSs to the OCAS. 
This could be context-awareness messages in order to support the context-based 
SON functions (through the CS-OCAS/CDCU Itf) or the procedure to register 
a new context service in the CSR (through the CS-OCAS/CSR Itf). 

• LNMA-OCAS/OCU interface allows (subject to operator permission) the 
configuration of the OCAS system by the LNMA. In turn, LNMA-OCAS/CSR 
serves for the manual registration of a CS by the LNMA. 

• UE-OCAS logical connections send direct UE monitoring information to the 
OCAS (through the UE-OCAS/MEU interface) and UE provided context 
information (by the UE-OCAS/CDCU) that may be required for the SAU. For 
non-cellular external context services, this interface would be UE-dependent. 
Therefore, it may be only available for specific UE models such as smartphones. 

All the interfaces connecting the OCAS with the OAM architecture should follow 
the same standards as defined for 3GPP interfaces, being mainly based on TR-069 and 
XML [43]. CS-OCAS and UE-OCAS interfaces, however, are defined with elements 
that are independent of the mobile communications OAM network, as they are 
encapsulated on the user plane, so any communication protocol (over IP) can be freely 
defined for these data flows. 
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3.4.2.3 3GPP LTE/LTE-A femtocell network 

The physical implementation of the proposed architecture for LTE/LTE-A systems, 
is centered on the case where the deployed small cell are open access femtocells 
(HeNBs). These are chosen because their limited capabilities, high vulnerabilities and 
wide usage make this case specially challenging and comprehensive from an OAM 
perspective. 

OAM-SON functionalities follow the standardized 3GPP architecture [26], with the 
novel addition of the OCAS, which implements local context-based SON 
functionalities. OCAS implementation can be local (if performed by hardware 
connected to the same LAN – local area network) or remote (by an external hardware 
connected to the system via the Internet). Remote solutions have high versatility in 
terms of using existing or leased equipment. However, the need of exchanging a high 
amount of information through the often limited network backhaul, highly encourages 
the adoption of local implementations as the one it is adopted here. Challenges for this 
approach include the need of OCAS additional on-site hardware, its installation and 
maintenance, although the related cost is expected to be minimal over the total 
deployment expenses. 

 

 

Figure 3.4: Proposed OAM architecture for LTE/LTE-A femtocells. 
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Figure 3.4 presents the local physical implementation, for LTE/LTE-A commercial 
or corporate femtocell scenarios. The DM role is implemented by the HeMS. HeNBs 
user and control planes connect to the operator’s core through the S1 interface, while 
the X2 interconnects the femtocells for distributed cooperation (in LTE-A). The 
defined logical links are implemented by physical connections as follows: 

• UE-OCAS and NE-OCAS: The information transmitted from the UEs to the 
OCAS is sent through the Uu interface to the femtocell. This data (as well as 
the particular commands/information from the stations transmitted by the NE-
OCAS interface) is then retransmitted through the LAN to the OCAS. 

• CS-OCAS: The interface used to transmit the context information (in case it 
is not directly obtained from the terminals) is implemented by the CSs through 
the LAN or the Internet connection to the OCAS. 

• NM-OCAS and DM-OCAS: The information between the OCAS and the 
operator’s core (i.e., the highest elements of the standard OAM layers: DM, 
NM) is sent by the router through the backhaul to the operator’s core. 

The use of LAN for exchanging data between the OCAS and the UEs greatly 
minimizes the traffic in the backhaul and the operator’s core at reduced delay. This 
traffic local breakout has been envisaged by standards like Local IP Access and 
Selected IP Traffic Offload (LIPA-SIPTO) [44] or projects [42]. 

 

3.4.2.4 Domain responsibility and security 

This characteristic refers to the commercial/legal entity in charge of managing the 
proposed OAM architecture. The responsible entities include the mobile network 
operator, the user/administrator of the local system or a third party.  

Even if the considered scenarios are essentially local, the small cells are currently 
part of the mobile network operator infrastructure and make use of its radio spectrum. 
Therefore, as SON will alter the cells configuration, OCAS should remain on the 
operator’s domain but they could transfer the responsibilities of the local-centralized 
system to a local user/administrator. 

The connections between the OCAS and the CSs shall avoid the disclosure of 
network status information that may be sensitive. Thus, the extent, authenticity, 
accountability and correctness of the information exchanged will be critical. 
Standardization on the CS-OCAS and LNMS-OCAS and related processes may be 
necessary to limit this issue. 
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3.4.3 SON use case 

In this subsection, some baseline MLB algorithms are presented to verify the 
context-aware SON framework. For that purpose, a novel design is proposed to 
integrate context-awareness into these MLB algorithms. It is shown that context-aware 
SON compared to baseline algorithms achieves better network performance and 
reduces the optimization time to reach the permanent regime (steady state). 

 

3.4.3.1 Mobility load balancing use case 

MLB is a use case defined by the 3GPP [45]. It has the ability to manage and 
direct voice and data traffic from loaded cells to the most suitable cell, independently 
of the end layer (macrocell or small cells) or RAT (LTE, UMTS or GSM).  

Normally, most non-context-aware algorithms that follow an adaptive process to 
optimize the cellular network work properly (i.e., a few iterations and short time to 
reach the optimal network parameters) when users are homogenously widespread 
around the coverage area of the loaded cell, due to the fact that neighboring cells 
equally catch some of those users [16] [17]. However, if the users’ distribution is 
concentrated in certain part of the cell coverage area (top Figure 3.5), most non-
context-aware mechanisms follow a similar process: all neighboring cells try to catch 
those users (e.g., by tuning cells transmission power as illustrated in Figure 3.5(a). The 
consequence of this act could be either the degradation of the network performance or 
the algorithm oscillation to reach the steady state. That conclusion will be seen in the 
evaluation subsection. Figure 3.5(b) illustrates an optimal solution to face that 
problematic situation. This scenario could be identified thanks to users and objects 
context-awareness. In this case, only the closest neighboring cell to the loaded cell 
should catch users. For example, by increasing its transmission power and, at the same 
time, the transmission power of the loaded cell is reduced. Those variations of 
transmission power are restricted to the cell transmission power range (e.g., from 0.016 
to 250 mW). Additionally, some cellular methods to avoid high interference could limit 
that maximum value whereas other methods that analyze the QoS, limit the minimum 
value of transmission power to avoid coverage holes. 

Several MLB algorithms in open access femtocell scenarios have been developed in 
the literature. The Power Traffic Sharing (PTS) algorithm [16] has been chosen as a 
baseline method. Additionally, a modified version of Power Load Balance algorithm 
[15] is developed: Power Load Sharing (PLS). The objective of these procedures is to 
intelligently optimize an indicator or Figure of Merit (FM) while maintaining the 
network performance.  
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 (a) Classical MLB (b) Context-aware MLB 

Figure 3.5: Classical MLB vs context-aware MLB. 

 
The main scheme of these PTS and PLS algorithms is presented in Figure 3.6 

where the essential block of the MLB is a Fuzzy Logic Controller (FLC) [46] (an FLC 
approach has been detailed in Appendix C). These mechanisms have the control and 
the decision of the next network configuration depending on its inputs, which are 
network counters or indicators, and on the feedback of the previous FLC response. The 
optimization is carried out by tuning femtocells transmission power to balance or share 
traffic between neighboring cells, increasing the system capacity and reducing the 
global user dissatisfaction. These algorithms are briefly explained: 

• Power Traffic Sharing (PTS): Baseline algorithm that tunes cell 
transmission power to balance users’ traffic. The input parameters of the FLC 
are two: the difference between the serving cell blocked calls and the average 
neighboring cells blocked calls, as well as the output parameter of the previous 
FLC response (feedback). This output parameter tunes the cell transmission 
power by increasing/decreasing or no variation current cell transmission power. 
This mechanism is periodically launched per cell. 

• Power Load Sharing (PLS): In this case, the input parameters are, the 
difference between the number of slots used per Physical Resource Block (PRB) 
over the total available slots per PRBs in the serving cell and the average of the 
same indicator per neighboring cell. The second input is, as previously, the 
feedback of the FLC. It has the same output as PTS method. This mechanism 
is also periodically launched per cell. 
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Figure 3.6: PTS and PLS scheme. 

 
A long convergence time or/and a large period to get the input data for the 

algorithms could provoke the no-convergence in time to the optimal network 
performance, in case the radio or environment conditions change rapidly. For this 
reason, context information is very important to quickly achieve the optimum network 
parameters and reach the permanent regime in the shortest period possible.  

 

3.4.3.2 Context-aware SON algorithms 

Based on the described framework for context-aware SON and the aforementioned 
MLB algorithms, a novel context-aware approach is developed. The proposed 
technique is supported by the CAM (or CDCU element, see Figure 3.3), which is in 
charge of classifying context information and removing redundancies, i.e., the same 
kind of data is grouped, labelled (e.g., user_position, mobile_orientation, etc.) and 
dated to ease further processing. After that, this information is forwarded to the 
context-aware SON mechanisms (or SAU element, see Figure 3.3). For this specific 
work, a new module, Integration Module (IM), is defined to integrate the context 
information into the MLB algorithms (PTS or PLS).  

 

  

Figure 3.7: Context-aware MLB scheme. 
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The IM analyzes the context data provided by the CAM and decides whether the 
MLB algorithm outputs are set in the cellular network or whether they must be 
modified. That decision would be the new feedback of the MLB module. Although the 
IM location would depend on the cellular operator’s decision, close integration to the 
MLB algorithm is preferred in order to avoid delays and overhead of information due 
to the high amount of data exchanged (e.g., implemented in SAU element, see Figure 
3.3). The global context-aware MLB scheme is shown in Figure 3.7. 

 

  

Figure 3.8: Integration module (IM). 

 
Figure 3.8 details the IM. The context information is processed at the Filter 

module to remove the data not used by the particular SON algorithm (e.g., the 
smartphone orientation and weather are discarded for the presented algorithm) and to 
select the useful information for this approach: users’ position and distribution. 
Therefore, those messages labelled as "user_position" or "users_distribution" are 
accepted whereas any other message is discarded. After that, real-time data is 
forwarded to the Analyzer while those data which provide information about upcoming 
events (e.g., a book signing event) are stored into the Prediction Database for future 
use. Any other information out of date is also rejected. Both, online data from the 
Filter and stored data from the Prediction Database are interpreted by the Analyzer. 
In this approach, the Analyzer is sensitive to cell congestion and users’ concentration 
close to the edge, therefore, some parameters are calculated as follows.  

Firstly, it is necessary to determine whether the serving cell situation is considered 
as congested or not, which is calculated as the serving cell load being higher than the 
average load of its neighboring cells or not. Secondly, the situation where users’ 
concentration is close to the cell edge, is evaluated based on the context information 
and the received power per user. The user concentration is considered high when most 
users are located in the same area. For this approach, that situation happens when 
most users are inside a quarter of the cell area. The user should be located at the cell 
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border when receives similar power from its serving cell and another neighboring cell. 
This module provides three output values (see Figure 3.5(b)):  

- If the studied cell is a congested cell or it is the nearest neighboring cell of a 
congested area then output value is 1, 

- If not, in case the studied cell is a neighboring cell of a congested cell then 
output value is 0,  

- Otherwise, output value is –1. 

 The Analyzer output is sent to the Decision-Maker, together with the Acceleration 
Function, to decide the modification applied to the MLB algorithm output. The 
Acceleration Function selected for this approach is a simple step function where 
depending on the Analyzer output, the MLB algorithm output is multiplied by a factor 
(step function). Other functions might improve the convergence time and network 
performance. In this case, if the Analyzer output is:  

- 1, the MLB algorithm output is doubled,  
- 0, no variation is applied to the MLB algorithm output,  
- –1, the MLB algorithm output is cancelled. 

 

3.5 Evaluation 

In this section, the proposed context-aware SON framework is assessed by the 
analysis of the proposed context-aware approach. These context-aware MLB 
algorithms are evaluated by the dynamic system-level LTE simulator described in [47]. 

 

3.5.1 Simulation set-up 

A simple and realistic simulation scenario simulates part of a shopping center 
comprising four particular areas such as shops, offices, restaurants or social places 
where there is a small cell deployed inside each one. These base stations are denoted 
by red markers on the bottom images of Figure 3.9. Outside the building, a single tri-
sectorized macrocell is also placed, completing the realistic setup. This deployment 
presents a frequency reuse factor of 1 and all small cells share the same backhaul 
connection. The OCAS architecture is selected to implement the SON methods. A 
random waypoint model has been implemented for users’ mobility management, where 
users move freely between those areas through the corridors. Additionally, an indoor 
positioning system is emulated to provide the users’ position. 
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 (a) Optimized network (b) Conditions change (c) New configuration 

Figure 3.9: Temporal and spatial user distributions in the scenario. 

 
To test the benefits of context-awareness in the reference MLB algorithms, three 

different spatial user distributions have been simulated along the time as presented in 
Figure 3.9. Initially, as shown in Figure 3.9(a), the network starts from an optimized 
situation, as the UR graph shows (5%). Most people are grouped in the same area 
(e.g., lunch time in a restaurant). Next, in Figure 3.9(b), people begin to move away 
from that place (e.g., at the end of lunch time) and new users fill a new area within a 
short period (e.g., a clothing store opens). Therefore, the previous optimized network 
configuration is out of date and network performance starts to get worse, in other 
words, bad users’ experiences. This consequence can be observed in the UR graph 
(Figure 3.9 top, blue line). The red dotted line shows the reaction when a conventional 
MLB algorithm catches this situation and the time, 𝑡𝑜𝑜𝑜, to converge to the optimal 
UR. The same behavior is shown for a context-aware MLB algorithm in green dotted 
and dashed line. Finally, in Figure 3.9(c), the network parameters are optimized and 
the new crowded area is well-managed, obtaining high network performance 
improvement compared to a non-optimized network, as UR graph shows.  

 

3.5.2 Simulation results 

The simulation results for each method are described here. Concretely, as 
mentioned before, two kinds of indicators are studied: the UR and the 𝑡𝑜𝑜𝑜. For this 
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purpose, the algorithms have been launched at different periods: 1 hour and 30-15-5-1 
minute (as described in Section 3.4.1 “Framework characteristics”). Each simulation 
lasts 24 hours in order to ensure the steady state of the UR. In consequence, depending 
on the period of the algorithm execution, the number of these tests is 24 for the 1 hour 
algorithm execution or 1.440 for that of 1 minute. 

On the one hand, the UR acceptable by the network operator could be a challenge 
in many situations. In these simulations, as shown in the UR graph in Figure 3.9, the 
network has been heavily overcrowded getting an UR indicator over 25% (blue line). 
In Figure 3.10, the average UR at the steady state and the error bars (maximum and 
minimum values of UR) achieved for these algorithms at different execution periods 
are presented. Firstly, in the left diagram, the integration of context information into 
the original PTS algorithm (CA-PTS) is compared to the original PTS algorithm. On 
average, a relative gain of 15% in satisfied users is achieved thanks to the additional 
information provided by the external sources. In addition, a reduction in UR is also 
obtained when the execution period of the algorithms is shortened from 1 hour to 1 
min (from 13.1% to 10.5% in the PTS method and 11.8% to 9.1% in the CA-PTS 
method). In the same context, the right diagram analyzes the PLS algorithm and 
context-aware PLS method (CA-PLS), and similar results are obtained. The 
explanation is related with the correlation among input data, CBR and PRBs activity: 
once all PRBs are getting full, the network refuses new incoming connections. For that 
reason, these two algorithms converge to similar UR approaches.  

 

      

Figure 3.10: Average UR and error bars. 

 
On the other hand, the time required for UR convergence (𝑡𝑜𝑜𝑜) has been studied 

(Figure 3.11). As expected, the shorter algorithm execution period, the faster optimal 
UR convergence. Furthermore, the enhancement obtained thanks to context awareness 
in these algorithms is evident. This additional information reduces the normal 
convergence time by nearly 50% in both algorithms. That means, several users suffer 
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bad QoE during the convergence time. Therefore, those users could leave their current 
cellular operators to look for better service (and, consequently, the operators’ revenues 
would be reduced). 

 

     

Figure 3.11: Convergence time (𝒕𝒐𝒐𝒐). 

 

3.6 Conclusions 

A framework for context-aware SON has been presented, proposing different 
context sources and time intervals to get that information. Additionally, a novel OAM 
architecture extension for 3GPP-based SON is proposed for commercial and corporate 
indoor small cell scenarios to support the context-aware SON framework.  

An MLB mechanism has been taken as a baseline to be upgraded with extra data 
provided by external network sources. The results show that the proposed approach 
leads to a significant improvement in the response time by using position awareness. In 
consequence, the convergence time has been reduced about 50%. Subsequently, the 
optimal UR values have been enhanced, decreasing the number of dissatisfied users in 
the cellular network. 

These results and the qualitative analysis of the OAM impact in terms of signaling 
overhead and delay, demonstrate that placing most of the SON functionalities at the 
lowest levels of the OAM hierarchy is the right decision. 
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Chapter 4 

4 Indoor positioning strategies 
 

 

This chapter presents a multi-antenna RFID-based indoor positioning system using 
active tags. In addition, it is studied the improvement of the positioning system 
accuracy by the integration and analysis of RF measurements from cellular 
technologies. For that purpose, an experimental analysis of simultaneous RF 
measurements from RFID and macrocellular networks is carried out. 

The structure of this chapter is as follows: Section 4.1 introduces current indoor 
positioning systems. Section 4.2 details the state of the art, focusing on wireless 
heterogeneous techniques. Section 4.3 presents the problem description. Section 4.4 
describes the proposed indoor positioning strategies. Section 4.5 evaluates the accuracy 
of these indoor positioning systems. Finally, Section 4.6 includes the conclusions and 
perspectives of this chapter. 

 

4.1 Introduction 

Nowadays the requirements of Location-Based Services (LBS) in terms of location-
accuracy at indoor environments go from few centimeters to several meters or even the 
detection of a room/office. Cost reduction of wireless devices makes RF (radio 
frequency) solutions good candidates for low cost indoor positioning systems. Several 
RF technologies have been proposed for providing indoor positioning such as UWB, 
which presents position errors of few centimeters, or RFID, which is in the range of 
few meters. However, accurate indoor positioning systems are still expensive and 
present high costs in terms of hardware price, deployment expenditures, computational 
cost and complexity, especially for very accurate solutions, such as UWB.  
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The identification of being inside a room or office could be easily performed with 
many RF-based indoor positioning systems. Nevertheless, other indoor scenarios like 
halls and corridors are commonly a challenge as they would require more accuracy. 
The use of multi-antenna devices could help to improve location accuracy in such a 
challenge scenarios and reduce the infrastructure costs. 

In parallel, a wide variety of wireless communication networks coexist 
simultaneously with human beings. These networks are the so-called HCNs where 
several wireless technologies surround daily life to create massive communication layers 
at different frequencies. These infrastructures provide a cloud of parallel information 
that could be, not only used for communication purposes, but also for enhancing 
accuracy and robustness of several, a priori, unrelated applications, such as indoor 
positioning. In this way, mechanisms for opportunistic radio positioning based on 
multiple technologies (e.g., WLAN together with GSM, etc.) have been devised as 
promising solutions. The integration of those technologies in current indoor positioning 
systems could lead to the required levels of accuracy for new applications at reduced 
costs.  

Based on these claims, the use of multi-antenna readers for RF-based indoor 
positioning systems to minimize infrastructure costs and achieving high accuracy is 
studied. Herein, RFID multi-antenna readers with active tags are selected as a low cost 
RF technology. In parallel, the combination of the RFID-based indoor positioning 
system with other low cost RF solutions is analyzed and developed in order to reduce 
the position error. Macrocellular networks, one of the most widely extended RF 
technologies, are selected.  

The main contributions of this chapter are the study and assessment of:  

• Techniques for data fusion when having multiple sets of RFID measurements, 
each one referred and collected by an antenna, at indoor challenge scenarios like 
halls and corridors. 

• Trade-off between the number of RFID tags and antennas in the reader. 

• Integration of cellular technology information into RFID-based indoor 
positioning systems. 

• Measurement campaign for an experimental analysis of both RFID and cellular 
technologies. 

Finally, real field measurements are used to evaluate the capabilities of the 
proposed indoor positioning systems. 
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4.2 Related work 

In indoor positioning and navigation fields, the large diversity of application 
environments leads to a large diversity of solutions. A summary of the main 
positioning technologies, techniques and their performances for typical applications are 
detailed in [48]. For these applications, several performance criteria can be defined, 
such as robustness, responsiveness, consumption, size, scalability, compatibility with 
human beings, accuracy or precision. 

Literature presented several RF-based indoor positioning systems. The authors in 
[49] and [50] evaluated Channel State Information (CSI-based) positioning versus 
RSSI-based positioning in three typical environments such as a research laboratory, a 
lecture theatre and a corridor. With the RSSI-based system the median position error 
is less than a meter for the laboratory and 2 m in the lecture theatre, while it is 2.5 m 
in the corridor. The cumulative distribution function (CDF) of the position error with 
90% of probability is 1.5 m and 3 m for the two first environments, while it is almost 
3.5 m for the corridor. Conversely, CSI-based method is the most accurate technique 
but the corridor environment is still harsher than the others; the 90th percentile of 
position error is more than 1.75 m while it is 1.5 m for the laboratory.  

The work in [51] proposed LuPI (Locating using Prior Information). It considered 
that human motion can be distinguished and recorded by radio information (RSSI 
deviation between different positions) and a pedometer (based on accelerometer 
embedded in a smartphone). LuPI utilized the RSSI and the sensor-based pedometer 
to build a RSSI variation space as prior information. In order to assess this solution, 
extensive measurements were made on the third floor of a middle-size building with 
different types of room/areas. In the analyzed corridor, the average error of the 
proposed system is 5.9 m. In a big room, the average error is 1.4 m, while it is 1.9 m in 
a small one. Focusing on RFID technology [52] [53] [54] and multi-antenna indoor 
positioning systems, several works can be found in literature [55] [56]. These works 
used the antenna diversity to assess the probability of a position when a tag was 
detected or not, or to provide Direction-of-Arrival (DoA) estimation by phase arrays 
in small covered areas, typically less than 10 m2. Other works studied the impact of 
the number of antennas and its configuration on location accuracy [57] or compared 
position estimation methods [58] [59]. The study described in [57] considered four 
different multiple antenna configurations: SISO, SIMO-MISO and MIMO. The best 
results were performed with MIMO and the average position error is 1.5 m with 3 dB 
shadowing standard deviation. When increasing the number of antennas from 2 to 14, 
the position error decreased from 2.3 m to 0.9 m. Conversely, [58] proposed three 
estimation methods for an increasing number of transmit antennas (2 to 4), the 
position error varies from 2 m to 1.5 m in 7x7 m2 room. Finally, [59] presented the 
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accuracy and stability results for RADAR, Area Based Probability (ABP), Simple 
Point Matching (SPM) and Bayesian Networks (BNs) algorithms. For each one, the 
CDF of the position error was calculated when averaging and not averaging the 
antenna data, and when applying a Gaussian distribution to the measured RSSI. The 
experimentation area was about half of a floor measuring 66.75x51.5 m2 and the best 
accuracy was 1.5 m. Experimentations at a desk level were small one-foot movements 
around a main center placement with accuracy of 0.9 m.  

In outdoor scenarios, the signal coming from macrocell base station can be 
processed in order to obtain just a rough estimation of a mobile terminal position 
(hundreds of meters). In indoor scenarios, some studies characterized GSM/UMTS 
signals from macrocells to check the reliability of building indoor radio maps for 
fingerprinting purposes [60]. Other works [37] [61] presented a fingerprinting technique 
based in the mapping and use of radio signals from femtocells for positioning terminals 
in indoor environments. The accuracy of those systems was few meters. However, such 
indoor cellular deployments are still no widely implemented and costly. The proposed 
option of combining RFID with macrocell technology measurements could successfully 
provide the level of accuracy required in RFID-based indoor positioning systems for 
pedestrian navigation in buildings.  

In this respect, the first works integrating diverse RF technologies for indoor 
positioning were presented a few years ago [62] [63] [64] where RFID, WLAN and 
GSM technologies were analyzed. The main purpose of combining different 
technologies is to increase the accuracy [65], or the density of the devices to be 
localized [66], or to overcome the continuity indoor/outdoor challenge [67], where these 
systems need to handle heterogeneous devices [68] and vertical handovers [63]. 
European Project WHERE2 [69] presented results of real-life experiments based on 
ZigBee and Orthogonal Frequency Division Multiplexing (OFDM) devices (emulating a 
multi-standard terminal moving in typical indoor environments), with measurements 
using RSSI and Round Trip Delay (RTD). A comparison between non-cooperative and 
cooperative positioning was done and several positioning algorithms were tested in 
both cases. The 90th percentile of position error is 4 m. In reference [63], algorithms 
with realistic heterogeneous wireless networks, including GSM, DVB, FM and WLAN, 
were evaluated with measurements of RSSI. That paper proposed two positioning 
algorithms: Direct Multi-Radio Fusion (DMRF) reorganized the information in a 
transformed space and Cooperative Eigen-Radio Positioning (CERP) used the spatial 
discrimination property. The mean position error of this approach is 1.5 m. 

Based on these works, the accuracy of these indoor positioning systems could be 
further improved to accomplish the requirements of current LBS applications (e.g., 
position error below 1m for pedestrian indoor navigation). 
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4.3 Problem description 

RF-based techniques are widely used for indoor positioning, but they usually do 
not provide enough accuracy for indoor navigation. In such techniques, metrics as 
RSSI, Angle of Arrival (AoA) or Time of Flight (ToF) may not be directly related to 
distance or relative position between transmitter and receiver. This is due to multi-
path and fading phenomena that can be dominating in indoor environments. 
Therefore, position estimation suffers from this initial uncertainty and sophisticated 
positioning algorithms and filtering are needed to compensate these drawbacks. 

Three main types of environments could be found for indoor positioning in a 
building: halls, corridors and offices. For offices and rooms, simple detection of 
presence in the room could be enough for many applications. However, accurate indoor 
positioning systems are specially required in corridors and halls with multiple doors. 
Such areas (e.g., hospital corridors surrounded by patient rooms) act as distributors to 
different locations making essential a precise position estimation, e.g. in order to 
indicate a specific door. Hence, the proposed indoor positioning system would be 
focused on a corridor environment which is a more critical scenario than halls in terms 
of multi-path propagation. Fingerprinting techniques are good candidates to overcome 
multi-path propagation uncertainty. Fingerprinting techniques compare several 
features of the fingerprinting pattern (large data) with current information. That 
identifies the original data with the analyzed information [70]. 

Focusing on RFID systems, they could be active or passive (in terms of tags 
activity). Passive systems could work in a reliable way for reading distances up to 3 m 
in indoor environments or 15 m in free space conditions [71]. Furthermore, passive tags 
embed a shunt resistance in order not to damage circuitry when the tag is near to the 
reader, avoiding the loading effect. Therefore, when tag-to-reader distance is less than 
10 𝜆, the system does not ensure the received power is linked to the distance by any 
propagation model [72] [73]. In consequence, passive systems are not convenient for 
indoor challenge scenarios like corridors where tags and readers would be very close to 
each other. Conversely, active technology copes with these limitations regarding the 
tag-to-reader distance and reading distances are up to 15 m in indoor scenarios. Even 
so, passive tags cost ten times less than the active ones but the price of the readers is 
also very important. The use of multi-antenna readers would improve the system 
performance. It could be done by increasing the number of antennas of a reader or 
placing two (or more) readers together. The later would require a higher investment 
with readers for passive tags compared to the readers for active tags. Taking it into 
account, each device (e.g., smarthphone) would need a reader, thus, the price of the 
reader would be more important than the price of the tags.  
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In this respect, RFID systems with active tags: are not expensive compared to 
passive tags, have an operating range of several tens of meters and are easy to deploy, 
which comply with the application requirements for pedestrian navigation. However, 
the accuracy of this RFID-based indoor positioning system should be improved to 
reduce the position error (few meters). In addition, none of the previous work analyzed 
the promising approach of combining RFID and macrocell signal processing as a low 
cost solution. In fact, up to the author knowledge, there has not been any deep study 
in the field of combining RFID with macrocellular signals. Hence, this is a suitable 
option for enhancing precision for pedestrian navigation in buildings with a highly 
reduced implementation costs in comparison with previous solutions. 

Further details about RFID and cellular technologies are summarized in Appendix 
A. It describes their general characteristics and theoretical models in indoor scenarios. 
Additionally, Appendix B presents a signal study of these technologies based on their 
theoretical models and the measurement campaign. It would assess their applicability 
for indoor positioning systems. 

 

4.4 Methods for indoor positioning 

To determine the possible improvement achievable by the use of different 
techniques and multi-antenna RFID reader or the combination of RFID and cellular 
technologies, different baseline single-technology solutions are defined. 

Firstly, the description of the selected scheme for the implementation of the 
proposed indoor positioning system is detailed. Then, several techniques and methods 
for data fusion are analyzed for the RFID-based indoor positioning system. Finally, the 
integration of the cellular technology into RFID-based positioning system is presented. 

 

4.4.1 Fingerprinting-based scheme 

Fingerprinting is selected to provide indoor positioning, being a widely applied 
scheme for positioning in these environments [74]. It is defined by two main phases as 
Figure 4.1 depicts; calibration phase (offline) and localization phase (online). These 
stages are explained focused on the proposed approach: 

• Calibration phase: This stage is performed prior to the provision of the 
positioning service. RSSI (𝜇𝛼,𝜏

𝑃𝑃𝑃� 𝛾𝑓�) is collected by the antenna(s) of the reader 
(where 𝛼 represents the particular antenna of the set of antennas 𝐴 of the 
reader, 𝛼 ∈ 𝐴) from different transmitters (where τ represents the particular 
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transmitter of the set of transmitters 𝑇, τ ∈ 𝑇). That information is gathered 
from known positions (also called fingerprinting positions) 𝛾𝑓 = �𝑥𝑓 ,𝑦𝑓 , 𝑧𝑓� of the 
scenario and it is referred as fingerprinting measurements or calibration data. 

• Localization phase: It is in charge of the online positioning service. The set of 
measured RSSI (𝜇𝛼,𝜏

𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐)) collected in real time by the device to be localized, 
are used to estimate its current position γcurr = (𝑥, 𝑦, 𝑧) by means of comparing 
it to the stored fingerprinting data. Different techniques can be implemented. 

 

4.4.2 RFID-based positioning system 

An RFID-based system with active tags is proposed. Different positioning 
techniques and methods for data fusion are analyzed for multi-antenna readers. 

This system collects information (𝜇𝛼,𝜏
𝑃𝑃𝑃) from each fingerprinting position in the 

calibration phase. Then, the localization phase processes the current measurements. 
This phase is divided in three main steps as Figure 4.2 shows: 

• Step 1 - Candidates ranking: Each of the fingerprinting positions is assigned 
with a certain weight 𝑤�𝛾𝑓 , 𝛾𝑐𝑐𝑐𝑐� based on different possible criteria 
(techniques): the similarity of the 𝜇𝛼,𝜏

𝑃𝑃𝑃 values received from each transmitter in 
respect to those stored in the fingerprinting database, the posterior probability 
of being in the fingerprinting positions given the current 𝜇𝛼,𝜏

𝑃𝑃𝑃
 values, etc. 

• Step 2 - Candidates filtering: Based on the ranking generated in the previous 
step (weighted fingerprinting positions), one or several of them, candidates, are 
selected as possible estimated positions. The rest are discarded. 

• Step 3 - Position estimation: From the set of the selected candidate positions, 
the current position of the device is estimated. 

It could be observed in Figure 4.2 that the localization phase could be executed in 
parallel for each set of collected data from each antenna. This means, several single-
antenna RFID-based positioning systems with multiple position solutions (one per 
system). Conversely, the system information from each antenna could be merged into a 
single flow at the beginning of each step (any of the 3 steps) or at the end of step 3, as 
the flowchart illustrates through the green dashed blocks (fusion methods). Four fusion 
methods are proposed to integrate the diversity of multi-antenna in the general 
positioning scheme. Note that, only one fusion methods could be triggered. An analysis 
to assess the optimal step to data fusion would be performed. Additionally, Figure 4.2 
illustrates the different techniques developed at each step.  
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Figure 4.1: Fingerprinting-based scheme. 
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4.4.2.1 Step 1: Candidates ranking 

This step processes the information supplied to the indoor positioning system 
(current measurements and fingerprinting measurements) to get ranked candidates 
(ranked fingerprinting positions). Firstly, the input data is gathered. Afterwards, a 
technique is selected for candidates ranking. The outputs of this step are the ranked 
fingerprinting positions, 𝑤𝑃𝑃𝑃�𝛾𝑓 ,  𝛾𝑐𝑐𝑐𝑐�. The input data and the ranking techniques are 
detailed below: 

1) Inputs 

Inputs could be either information from each antenna that would be processed in 
parallel and individually, or, information from all the antennas that would be 
processed together in a single positioning system: 

• Individually processed measurements  

Each set of information collected per antenna (𝜇𝛼,𝜏
𝑃𝑃𝑃) would be the input data of its 

indoor positioning system. There will be as many positioning systems as number of 
antennas in the receiver. 

• Fusion method 1: Measurements fusion  

The aim of this method is to collect all the fingerprinting and current 
measurements gathered from each antenna to be lately processed in a single indoor 
positioning system. This is depicted on the vertical flow of fusion method 1 and top 
horizontal scheme in Figure 4.2. Now, instead of processing the dataset from each 
antenna 𝛼 in an individual indoor positioning system, all the data is processed by one 
of them (e.g., indoor positioning system - 1). 

2) Candidates ranking techniques 

Different techniques proposed in the literature can be applied to calculate the 
weights and perform the ranking of all the samples, particularly Number of RSSI 
matches, Bayes Classifier or Euclidean Distance. Focusing on the multi-antenna case 
(all the information collected from each single-antenna receiver is processed by a single 
indoor positioning system), these techniques are described below. 

• Technique 1: Number of RSSI matches 

The indoor positioning system performs the ranked candidates by means of 
calculating the number of matches between the current measurements and the 
fingerprinting ones: 
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Figure 4.2: Flowchart of the RFID-based positioning systems. 
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𝑚𝑚𝑚𝑚ℎ𝑃𝑃𝑃𝛼,𝜏�𝛾𝑓, 𝛾𝑐𝑐𝑐𝑐� =

= �1 𝑖𝑖 𝜇𝛼,𝜏
𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐) ∈ �𝜇𝛼,𝜏

𝑃𝑃𝑃�𝛾𝑓� − 𝛥𝛥𝛥𝛥, 𝜇𝛼,𝜏
𝑃𝑃𝑃�𝛾𝑓� + 𝛥𝛥𝛥𝛥�

0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒
, (4.1) 

 
where 𝜇𝛼,𝜏

𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐) is the average RSSI from the transmitter 𝜏 in antenna 𝛼. This data 
is the mean of the values received during the acquisition time in 𝛾curr. The acquisition 
time is the period the reader is collected information before the position is calculated. 
A tolerance margin Δ𝑃𝑃𝑃 is defined to leave some flexibility in the comparison.  

Finally, the weight assigned to each fingerprinting position based on the 
measurements of the current position is calculated as the sum of matches: 

 
𝑤𝑃𝑃𝑃�𝛾𝑓 ,  𝛾𝑐𝑐𝑐𝑐� = ∑ 𝑚𝑚𝑚𝑚ℎ𝑃𝑃𝑥𝛼,𝜏�𝛾𝑓, 𝛾𝑐𝑐𝑐𝑐�∀τ∈𝑇

∀α∈𝐴
, (4.2) 

 
where 𝐴 is the set of antennas of the input data and 𝑇 is the set of transmitters. Note 
that, in case fusion method 1 is not selected, each single-antenna indoor positioning 
system calculates its own weights, and then |𝐴| = 1 for each of them. 

 

• Technique 2: Bayes Classifier 

 In this technique, 𝑤𝑃𝑃𝑃 �𝛾𝑓,𝛾𝑐𝑐𝑐𝑐� would depend on the probability of being in 𝛾𝑐𝑐𝑐𝑐 
given the values of 𝜇𝛼,𝜏

𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐) . This probability is calculated by means of the naive 
Bayes Classifier, being the equation that defines the classifier as 

 

𝑝̂ �𝛾𝑐𝑐𝑐𝑐 =  𝛾𝑓�𝜇𝐴,𝑇
𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐)� =

𝑝̂�𝛾𝑓�∏ 𝑝̂(𝜇𝛼,𝜏
𝑃𝑃𝑃(𝛾𝑐𝑐𝑐𝑐)|𝛾𝑓)∀𝜏∈𝑇

∀𝛼∈𝐴
𝑝̂(𝜇𝐴,𝑇

𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐))
, (4.3) 

 
where 𝜇𝐴,𝑇

𝑃𝑃𝑃( 𝛾𝑐𝑐𝑐𝑐) is the set of all the average RSSI values from all transmitters and 
antennas of the reader. Note that |𝐴| = 1 for single-antenna indoor positioning 
systems. 𝑝̂(𝜇𝛼,𝜏

𝑃𝑃𝑃(𝛾𝑐𝑐𝑐𝑐)|𝛾𝑓) represents the conditional probability of receiving 𝜇𝛼,𝜏
𝑃𝑃𝑃(𝛾𝑐𝑐𝑐𝑐) 

assuming that the reader is in a specific candidate spot 𝛾𝑓 of the fingerprinting points.  

The values of conditional probability are obtained from the precalculated 
conditional probability density function (PDF) of receiving a certain power in each 
fingerprinting position of the scenario. This function is defined independently for each 
transmitter and antenna considering a normal distribution with mean 𝜇𝛼,𝜏

𝑃𝑃𝑃(𝛾𝑓) and a 
standard deviation of 0.6 dB. Laplace smoothing [75] is applied over such initial 
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conditional probability to avoid given zero likelihood. In this way, given zero weight to 
suitable candidates just by the incorrect reception of one transmitter is avoided. 

The likelihood of the current evidence is 𝑝̂(𝜇𝛼,𝜏
𝑃𝑃𝑃�𝛾𝑐𝑐𝑐𝑐�), which is equal to all 

positions. Therefore, it can be discarded from the equation. Equally, the prior 
likelihood of being in each position 𝑝̂�𝛾𝑓�, is assumed equal to all positions. Hence, the 
weight expression can be simplified as: 

 

𝑤𝑃𝑃𝑃�𝛾𝑓 , 𝛾𝑐𝑐𝑟𝑟� = � 𝑝̂�𝜇𝛼,𝜏
𝑃𝑃𝑃(𝛾𝑐𝑐𝑐𝑐)�𝛾𝑓�.

∀𝜏∈𝑇
∀𝛼∈𝐴

 (4.4) 

 
• Technique 3: Euclidean Distance 

The Euclidean Distance technique is well-known in the literature [76]. The 
Euclidean Distance between the set of RSSI in γcurr for all transmitters and antennas 
of the reader and the ones stored for each fingerprinting position, are calculated. The 
coordinates of a position in the established Euclidean space is defined by the set of 
values of average RSSI. Integrating the multiple transmitters and antennas of the 
reader, each dimension of this space corresponds to one transmitter and antenna. This 
provides a Euclidean space of |𝛵||𝛢| dimensions. 

Therefore, in this space the coordinates of any position 𝛾 (fingerprinting or current 
position) are defined as follows. In case of single-antenna indoor positioning systems, 
|𝐴| = 1. 

 

𝜇𝛢,𝛵
𝑃𝑃𝑃(𝛾) = �

𝜇1,1
𝑃𝑃𝑃(𝛾) ⋯ 𝜇1,|𝑇|

𝑃𝑃𝑃 (𝛾)
⋮ ⋱ ⋮

𝜇|𝐴|,1
𝑃𝑃𝑃 (𝛾) ⋯ 𝜇|𝐴|,|𝑇|

𝑃𝑃𝑃 (𝛾)
�. (4.5) 

 
Finally, the Euclidean Distance between 𝜇𝛢,𝛵

𝑃𝑃𝑃(𝛾𝑐𝑐𝑐𝑐) and each 𝜇𝛢,𝛵
𝑃𝑃𝑃�𝛾𝑓� are 

calculated and assigned as the weight of the candidate 𝛾𝑓 as 

 

𝑤𝑃𝑃𝑃�𝛾𝑓 , 𝛾𝑐𝑐𝑐𝑐� = �� �µα,τ
Prx(𝛾𝑐𝑐𝑐𝑐) − µα,τ

Prx(γf)�
2

∀τ∈𝑻
∀α∈𝑨

. (4.6) 
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4.4.2.2 Step 2: Candidates filtering  

This step processes the ranked candidates proposed by step 1. Firstly, the input 
data is gathered. After that, a technique is selected to filter and discard useless ranked 
candidates. The outputs of this step are the most probable candidates. 

1) Inputs 

Inputs could be either the ranked candidates from step 1 (each single-antenna 
positioning system processes its own information) or all the ranked candidates of each 
indoor positioning system which will be processed together in the same indoor 
positioning system: 

• Ranked positions per positioning system  

Each set of ranked positions (𝑤�𝛾𝑓 , 𝛾𝑐𝑐𝑐𝑐�) of each indoor positioning system would 
be the input data of its own step 2. 

• Fusion method 2: Ranked positions fusion  

The aim of this method is to collect all the ranked positions from each indoor 
positioning system to be lately processed in a single indoor system. This is depicted on 
the vertical flow of fusion method 2 and top horizontal scheme in Figure 4.3. 

 

 

Figure 4.3: Fusion method 2 – Ranked position fusion. 
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In this way, the inputs of the fusion method 2 would be the set of ranked 
candidates 𝑤𝛼�𝛤𝑓, 𝛾𝑐𝑐𝑐𝑐� from each indoor positioning system (from step 1): 

 
�𝑤1�𝛤𝑓, 𝛾𝑐𝑐𝑐𝑐�,𝑤2�𝛤𝑓, 𝛾𝑐𝑐𝑐𝑐�, … ,𝑤|𝐴|�𝛤𝑓, 𝛾𝑐𝑐𝑐𝑐��, (4.7) 

 
where 𝛤𝑓 represents the set of all the fingerprinting positions. The output of the fusion 
method 2 would be 𝑤Α�𝛤𝑓, 𝛾𝑐𝑐𝑐𝑐�, where the weight for each fingerprinting position is 
assigned as: 

 

𝑤Α�𝛾𝑓 , 𝛾𝑐𝑐𝑐𝑐� =
1

|𝚨|
� 𝑤𝛼�𝛾𝑓 , 𝛾𝑐𝑐𝑐𝑐�.
∀α∈𝑨

 (4.8) 

 

2) Candidates filtering techniques 

Depending on these weights, the list of candidates is filtered. The technique of k-
intersected candidates is selected. The filtered candidates, 𝛤𝑓

𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐), are those with 
the k highest weights. Those candidates with weights equal to the maximum weight 
achieved max [𝑤�𝛤𝑓, 𝛾𝑐𝑐𝑐𝑐�] and the subsequent k-1 lower levels are selected. This 
implies that the number of candidates in the filtered set is equal or higher than k: 
�𝛤𝑓

𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐)� ≥ 𝑘.  

 

4.4.2.3 Step 3: Position estimation 

The last step calculates the estimated position based on the list of filtered 
candidates. Firstly, the input data is gathered. After that, a technique is selected to 
estimate the position from the current measurements. The outputs of this step could 
be the estimated position or several estimated positions (one per positioning system). 

1) Inputs 

Inputs could be either the filtered candidates from step 2 (each indoor positioning 
system processes its own information) or all the filtered candidates of each indoor 
positioning system which will be processed together in the same indoor positioning 
system (fusion method 3). 

• Filtered candidates per positioning system  

Each set of candidate positions (𝛤𝑓
𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐)) of each indoor positioning system 

would be the input data of its own step 3. 



 
Indoor positioning strategies  61 

• Fusion method 3: Filtered candidates fusion  

This method is used considering that the candidates were ranked and filtered 
individually by each positioning system. The aim of this method is to collect all the 
candidate positions from each indoor positioning system to be lately processed in a 
single indoor positioning system. This is depicted on the vertical flow of fusion method 
3 and top horizontal scheme in Figure 4.2. 

In that case, the set of candidates is built by the union of the sets of filtered 
candidates, discarding the repeated elements: 

 
𝛤𝑓,𝐴
𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐) = � 𝛤𝑓,𝛼

𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐)
∀𝛼∈𝐴

 (4.9) 

  

2) Position estimation techniques 

With the candidates, the estimated current position of the device, 𝛾�𝑐𝑐𝑐𝑐 = {𝑥�, 𝑦�} is 
calculated. Two techniques are analyzed: 

• Centroid (geometric center): The estimated position is calculated as the 
geometric center of the filtered candidates. Assuming a fixed height, the 
estimated coordinates of the position are calculated as: 

 

𝑥� =
1

�𝛤𝑓,𝐴
𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐)�

� 𝑥𝑓
𝑥𝑓∈𝑋𝑓

𝑓𝑓𝑓𝑓

         ;          𝑦� =
1

�𝛤𝑓,𝐴
𝑓𝑓𝑓𝑓(𝛾𝑐𝑐𝑐𝑐)�

� 𝑦𝑓
𝑦𝑓∈𝑌𝑓

𝑓𝑓𝑓𝑓

 (4.10) 

 
where 𝑥𝑓 ∈ 𝑋𝑓

𝑓𝑓𝑓𝑓 and 𝑦𝑓 ∈ 𝑌𝑓
𝑓𝑓𝑓𝑓 are the x and y coordinates of 𝛤𝑓,𝐴

𝑓𝑓𝑓𝑓. 

• Median: The position is estimated by the median of each coordinate of the 
filtered candidates. 

 

3) Output 

In case the configuration of the indoor positioning system is set to process the 
information collected by each antenna individually, i.e., none of previous fusion 
methods are triggered, several estimated positions are proposed (one per positioning 
system). Now, fusion method 4 would be in charge of estimate the final position.  
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• Fusion method 4: Estimated positions fusion  

Fusion method 4 is performed after the step 3 by calculating the geometric center 
or median (as step 3) of the set of the different estimated positions proposed by each 
indoor positioning system: 𝛾�𝑐𝑐𝑐𝑐𝐴 = {𝛾�𝑐𝑐𝑐𝑐𝛼1 , 𝛾�𝑐𝑐𝑐𝑐𝛼2 , 𝛾�𝑐𝑐𝑐𝑐𝛼3 , … }. 

 

4.4.3 Cellular technology into RFID-based positioning 
system 

A new scheme for enhancing the proposed RFID-based indoor positioning system 
with cellular technologies is proposed in Figure 4.4. The aim of this approach is to 
analyze and study the advantages of having both cellular and RFID signals at low 
cost. The proposed cellular-based positioning system follows the same scheme and 
steps as the one proposed for the RFID-based positioning system (see Figure 4.1 and 
Figure 4.2).  

According to the study carried out in Appendix B, the cell identifier (𝐼𝐼) has 
shown the most promising qualities for the proposed system instead of the PRX from 
each cellular antenna, so it would be the key input for this system. In this study, a 
single-antenna indoor positioning system is analyzed. 

The step 1 of the cellular-based indoor positioning system performs the ranked 
candidates by means of calculating the number of matches between the current 
measurements and the fingerprinting ones: 

 
𝑚𝑚𝑚𝑚ℎ𝐼𝐼𝛼 �𝛾𝑓, 𝛾𝑐𝑐𝑐𝑐� = �1 𝑖𝑖 𝐼𝐼𝛼( 𝛾𝑐𝑐𝑐𝑐) ∩ 𝐼𝐼𝛼�𝛾𝑓� ≠ 0

0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒
, (4.11) 

 
where 𝐼𝐼𝛼�𝛾𝑓� is the set of received identifiers by antenna 𝛼 at the fingerprinting 
position, 𝛾𝑓, and 𝐼𝐼𝛼( 𝛾𝑐𝑐𝑐𝑐) is the set of received identifiers at the current position, 
 𝛾𝑐𝑐𝑐𝑐, during the acquisition time. The expressions mean that in case both sets shared 
common identifiers, the match is considered affirmative.  

Afterwards, the weight assigned to each fingerprinting position is the same as the 
matches per fingerprinting position 𝛾𝑓: 

 
𝑤𝐼𝐼�𝛾𝑓 ,  𝛾𝑐𝑐𝑐𝑐� = � 𝑚𝑚𝑚𝑚ℎ𝐼𝐼𝛼�𝛾𝑓 , 𝛾𝑐𝑐𝑐𝑐�

∀α∈𝑨

. (4.12) 
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Figure 4.4: Integration of cellular technology into RFID-based positioning system. 
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The ranked positions are supplied to step 2 which obtains the most probable 
candidate positions. Subsequently, these candidate positions from the cellular-based 
positioning system together with the candidate positions from the RFID-based 
positioning system are processed by the Integration system. 

Even if other approaches are possible, this work integrates results from both RFID 
and cellular systems. These solutions allow a clear comparison of the gain of the 
integrated system as well as facilitate its integration in already existing services. With 
this objective, the proposed Integration system defines two main steps. 

 
1) Cellular discrimination 

The RFID filtered candidates per position 𝛤𝑓,𝑅𝑅𝑅𝑅
𝑓𝑓𝑓𝑓  are discriminated by the cellular 

filtered candidates 𝛤𝑓,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑓𝑓𝑓𝑓  as follows: an area of one squared meter (or maximum 

distance between two adjacent fingerprinting positions in the cellular calibration 
phase) is created for each cellular candidate position in order to evaluate if any of the 
RFID candidates are located inside this area. In this case, that RFID candidate 
position is selected, whereas any other candidate outside those areas is discarded.  

 
2) Opportunistic localization 

Once the new set of candidates has been selected, the estimated position is 
calculated in the step 3 by centroid or median metrics.  

 
The cellular-based indoor positioning system is inaccurate itself. Nevertheless, the 

cellular candidates are used to discriminate aberrant candidates proposed by the 
RFID-based positioning system rather than adding new possible candidates. In this 
sense, this discrimination could enhance the solution provided by the RFID system 
through a reduction of some aberrant of its candidates. 

 

4.5 Evaluation 

This section describes the configuration of the scenario, the equipment used and 
the measurement campaign. Then, the assessment of the proposed indoor positioning 
systems: RFID-based positioning system, cellular-based positioning system and their 
integration into a single system, is performed. 
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4.5.1 Trial set-up 

The corridor scenario, the equipment and the measurement campaign are described 
in the next subsections.  

 

4.5.1.1 Scenario 

The selected scenario is a corridor located on the 4th floor of an indoor office 
building (526 m2). It is 22.5 m long x 2 m width x 2.5 m height. Standard objects or 
furniture were not removed from the corridor to assess the proposed systems under 
real environments conditions and topology. Further visual details about this scenario 
from both sides of the corridor are depicted in Figure 4.5. 

 

   

Figure 4.5: Scenario – Corridor. 

 

4.5.1.2 Equipment 

The global indoor positioning system scheme is shown in Figure 4.6. Here, a cloud-
computing scheme is assumed, where most part of the positioning algorithm 
computation is performed externally by a remote entity. This is a widely extended 
approach in positioning systems in order to reduce the computational and storage costs 
for the device to be located (e.g., smartphone), at the cost of increasing the 
requirement of maintaining a continuous communication with the external entity. In 
this scheme, the information transmitted to the external entity can consist just in the 
RSSI, transmitter/receiver identifiers and timestamp. 



 
66  Indoor positioning strategies 

4.5.1.2.1 RFID equipment 

The UHF RFID technology system works at 433MHz (ISO 18000-7). It is composed 
by a two-antenna reader and 30 active tags, both from Ela-Innovation [77]. The reader 
model is “UTPDiff2” with 2 vertical dipole Rx/Tx antennas (see Figure 4.7(b)). Active 
tags are the “Thinline” model (see Figure 4.7(a)), which could be detected from as far 
as 20 m in an indoor environment. 

 

 

Figure 4.6: RFID-Cellular indoor positioning system scheme. 

 
Measurements collected by the RFID reader are quantified samples. The range goes 

from level 118 to level 215 in steps of 1 level. This is equivalent to -44 dBm for the 
lowest level and -106 dBm to the highest level with a resolution of 0.6 dB. 

 

   

 (a) Active tag (b) Two-antenna reader 

Figure 4.7: RFID equipment. 
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Active tags were located on the walls of the corridor following a pattern. Some of 
them are placed at 1.4 m height which corresponds to a doorknob while some others 
are placed at 2.1 m height, corresponding to a standard door height. The tags are 
alternatively placed from one height to the other with a distance of 1.5 m between two 
tags. On both sides of the corridor, a tag is placed at 1.4 m. Figure 4.8 illustrates a 
scheme of the position of the tags and the layout of the deployment. 

 

 

Figure 4.8: RFID active tags position. 

 
Notice that the ceiling is free of tags due to the specific radiation pattern of the 

two-antennas of the reader. The axis of the dipole has a zero, which means, zero 
reception on the ceiling-floor line. 

 

4.5.1.2.2 Mobile communications equipment 

For cellular network assessment two smartphones were used in the experimental 
evaluation: Samsung Galaxy S3 and Sony Ericsson Xperia X10 Mini E10i (as it will be 
later described, the former was used to measure UMTS technology and the later to 
measure GSM technology). They are widely extended commercial models running 
Android 4.2 and Android 2.1 respectively. Additionally, to measure and record the 
received power in those devices, a popular free Android application (app) for cellular 
monitoring, G-MoN [78], was used. This app is a powerful tool for monitoring cellular 
and other wireless technologies as a drive test tool. It provides cellular network 
information such as PRX, cell identifier, Local Area Code (LAC), etc. Note that, PRX 
values are averaged at Layer 1 and 3 [79] of the terminal protocol stack minimizing the 
impact of fast-fading in its values. Therefore, the app reported PRX reflects the path 
loss and shadowing characteristics of the signal. 
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4.5.1.3 Mobile platform 

The RFID reader and smartphones were placed on top of a trolley as Figure 4.9 
depicts. This trolley was the item to be located, referred as the mobile platform. It was 
moved along the corridor while receivers were reading and collecting information. 

Both antennas of the RFID-based system work at 433 MHz and collect samples 
from each static active tag. Regarding the cellular technology, Samsung smartphone 
was forced to be camped on UMTS network whose frequency band was 2100 MHz. 
Likewise, the other smartphone was pushed to be connected to the GSM network at 
900 MHz frequency band. LTE networks were only deployed in main cities on the 
moment of this study. Thus, the analysis of this technology would be a future work. 

 

   

Figure 4.9: Mobile platform. 

 
This technology diversity (433, 900 and 2100 MHz) allows a complete study in 

indoor conditions in order to enhance positioning systems (see Appendix B). 

 

4.5.1.4 Measurement campaign 

On the one hand, with the presented RFID equipment, the main parameters that 
can be measured by the reader in a time slot are: 

• Tag ID: Numerical identifier of the tags. 

• RSSI: Quantified received power from a tag. The range is from -44 dBm (level: 
118) to -106 dBm (level: 215) with a resolution of 0.6 dB (1 level). 
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On the other hand, for cellular signals, the main parameters that can be measured 
by common terminal applications are: 

• Cell ID: Numerical identifier of the serving cell and neighboring cells. 

• PRX: Received power from a macrocell. The resolution is 1 dB in the range 
[-115, -30] dBm. 

According to this, a signal assessment of RFID and cellular (GSM and UMTS) 
systems is performed in Appendix B in order to analyze the applicability of these 
technologies for indoor positioning systems. It is based on the theoretical models of 
each technology (see Appendix A) and a measurement campaign.  

Next subsections detail the measurement campaign carried out to collect samples 
and build the fingerprinting databases, as well as the localization phase of this study. 

 

4.5.1.4.1 RFID-based positioning system 

This system is composed by two phases of measurements. The sampling campaign 
of each phase is explained below. 

1) Calibration phase 

This phase collects and stores information about RSSI and Tag ID (𝜇𝛼,𝜏
𝑃𝑃𝑃) to build 

the RFID fingerprint model. Firstly, the corridor is divided in a mesh of 75x5 positions 
(375 positions: 75 positions per line and 5 lines) being the distance of adjacent 
positions of the same line equal to 30 cms (blue dots in Figure 4.10). Then, the trolley 
(i.e., two-antenna reader) is placed at each position, sampling and quantifying RSSI 
measurements. The equipment recorded samples during five minutes per position while 
tags were sampled every five seconds, which means, the fingerprinting database stores 
675000 samples (375 positions, 60 samples per tag/position and 30 tags). These 
measurements were gathered statically as the period of characterization was large and 
it is the proper approach for the characterization of each point at calibration phase. 

2) Localization phase 

Once the fingerprinting database is fully built, the system is able to automatically 
report the position of the trolley. For this study, the two-antenna reader monitors real 
time measurements and provides the estimated position of the trolley. Twenty one 
positions were dynamically estimated along the middle row of the corridor (red dotted 
line in Figure 4.10), emulating a commercial application. In this context, the 
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acquisition time at each point is estimated in 5 s while the system takes a mean time 
less than 0.1 s to calculate the estimated position. 

 

 

Figure 4.10: Positions. 

 

4.5.1.4.2 Cellular-based positioning system 

This system is composed by two phases of measurements as well. The sampling 
campaign of each phase is explained below. 

1) Calibration phase 

The measurements are recorded along the corridor every meter following 3 lines on 
the floor with a distance of 50 cm from each other (63 positions) as Figure 4.10 shows 
(green dotted circles). In this case, the selected parameter is the Cell ID, i.e., the 
macrocell identifier (𝐼𝐼𝛼). Therefore, Cell ID information was recorded every second 
during five minutes per position. In the whole scenario, around 37800 samples from the 
cellular networks (18900 samples per technology GSM or UMTS) were stored. 

2) Localization phase 

The localization phase was carried out at the same time as RFID localization 
phase, therefore, it followed the same period as RFID system to collect measurements 
and similar time to calculate the estimated position (less than 0.1 s).   

 

4.5.2 Trial results 

The proposed indoor positioning systems (RFID-based and cellular-based), the use 
of multi-antennas for RFID readers, the influence of the number of active tags and the 
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achieved synergies due to the integration of cellular technologies in RFID-based 
positioning systems, are analyzed in the field of heterogeneous localization. 

 

4.5.2.1 RFID-based positioning system 

In order to assess the RFID-based indoor positioning system, the techniques and 
fusion methods described in subsection 4.4.2 “RFID-based positioning system” are 
evaluated. Firstly, the study is focused on single-antenna system. Afterwards, the same 
analysis is performed with two-antenna and different fusion methods. Finally, a trade-
off between the number of antennas and the number of tags is detailed. 

 

4.5.2.1.1 Single-antenna 

The evaluation of this system is carried out in the middle line of the corridor by 
moving the mobile platform along it (see Figure 4.10). Only one antenna (A1) is used 
for this study. The error between the real position and the computed positions are 
calculated for each technique at each step in the localization phase: three techniques in 
step 1 (with two different tolerance margins for technique 1 – ±0.3 dB and ±0.9 dB), 
one technique in step 2 (with two different k-intersected candidates – k=1 referred as 
mic and k=5 referred as kic) and two techniques in step 3. As only information from 
one antenna is processed, no data fusion (fusion methods) is performed. 

Figure 4.11 shows the CDF of the position error for the presented techniques. 
Figure 4.11(a) selects the candidates by the “Number of RSSI matches” technique 
(technique 1). The tolerance margin is set to ±0.3 dB, i.e., equal values in the 
quantified RSSI levels of the fingerprinting and the measured positions. The four 
combinations present similar characteristics, 95th percentile is around 4-5 m. 

Figure 4.11(b) also illustrates the results of the “Number of RSSI matches” 
technique. Nevertheless, the tolerance margin is set to ±0.9 dB. In this situation, the 
95th percentile of position error is reduced to 3 m when the computed positions are 
calculated based on kic (blue and green lines). In case the mic approach is selected, 
i.e., the maximum intersected candidates are selected (k=1), the position error is 
increased. As observed, there is no significant difference between the centroid and the 
median metrics.  

Similar behavior is observed in Figure 4.11(c) for the “Bayes Classifier” technique 
(technique 2). In case k=1, the 95th percentile of position error is around 3 m and 
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centroid and median metrics present the same results because there is only one 
candidate in the last step. Conversely, when k=5, this error is reduced below 2.5 m. 

In Figure 4.11(d) the results of the “Euclidean Distance” technique (technique 3) 
are depicted. Clearly, this technique shows the best performance compared to the 
others. It could reduce the 95th percentile of position error to less than 2 m. That error 
is improved when k=5 and the centroid metric is selected. 

 

      

 (a) Technique 1 (∆𝑃𝑃𝑃 = 0.3)  (b) Technique 1 (∆𝑃𝑃𝑃 = 0.9) 

      

 (c) Technique 2 (Bayes Classifier)  (d) Technique 3 (Euclidean Distance) 

Figure 4.11: Position error of one antenna (A1). 

 
Focusing on the best techniques of step 2 and step 3 (kic, k=5 and centroid metric) 

with each technique of step 1, the system performance based on each antenna (A1 and 
A2) is discussed (see Figure 4.12). “Bayes Classifier” and “Euclidean Distance” 
techniques (techniques 2 and 3) give the most accurate positions with the 95th 
percentile of position error bellow 2.5 m and 1.8 m respectively for antenna A1, and 2 
m and 1.5 m for antenna A2. 

These performances in corridors are as good (or better) than those indoor 
positioning systems presented in the state-of-the-art. In reference [49], the RSSI-based 
positioning method showed a 90th percentile of position error around 3.5 m and CSI-
based positioning method reduced that error to 1.75 m. Other works RFID-related 
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presented a higher position error. The 95th percentile of position error is 3 m in [54] 
where the RFID system is quite similar in terms of hardware to the one proposed here 
(19 sensors and 19 active RFID reference tags while this work uses 30 active tags). 
Conversely, the proposed approach presents less than 1.5 m for the 90th percentile.  

 

      

 (a) Antenna 1 (A1)  (b) Antenna 2 (A2) 

Figure 4.12: Position error of each antenna. 

 

4.5.2.1.2 Two-antenna 

The four proposed methods for data fusion based on antenna A1 and A2 are 
assessed. Hereafter, these four methods are tested for each technique at step 1 and the 
best combination of techniques of step 2 and step 3 (kic, k=5, and centroid metric). 

 

 

Figure 4.13: Performance of fusion methods for technique 1 - ∆𝑃𝑃𝑃 = 0.3. 

 
For the technique 1 (Figure 4.13), “Number of RSSI matches” with ∆𝑃𝑃𝑃 = 0.3, 

fusion method 3 and 4 show the lowest position error, an accuracy for the 90th 
percentile of 2.5 m, while with single antenna the position error was around 4 m for 
each case (A1 and A2). Fusion methods 1 and 2 give the same results because the 
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input weighted candidates at step 2 would be same in both cases for this technique 
(number of matches per fingerprinting position). 

For the technique 1 (Figure 4.14), “Number of RSSI matches” with ∆𝑃𝑃𝑃 = 0.9, 
almost all the fusion methods have an accuracy for the 90th percentile less than 2 m. 
This performance is worse than the one obtained with antenna A2 (1.7 m) but better 
than antenna A1 (3 m). This method suffers from the poor accuracy of antenna A1. 
Here, fusion methods 1 and 2 also give the same results but improve the average 
position error compared to fusion methods 3 and 4. 

 

 

Figure 4.14: Performance of fusion methods for technique 1 - ∆𝑃𝑃𝑃 = 0.9. 

 
For the technique 2 (Figure 4.15) “Bayes Classifier”, any of the fusion methods 

outperforms the results with a single antenna (accuracy for 90th percentile is 2.6 m for 
antenna A1 and 2 m for antenna A2). Fusion method 1 is the best with a 90th 
percentile of 1.2 m position error. For the other fusion methods, the position error is 
around 1.8 m. Note that, fusion method 3 and 4 present the same results: merging the 
selected candidates and then, calculating the mean position error is equivalent to 
calculate the position for each antenna and then calculate a mean position error. 

 

  

Figure 4.15: Performance of fusion methods for technique 2. 
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 For the technique 3 (Figure 4.16), “Euclidean Distance”, any of the fusion methods 
gives better results than single antenna (around 1.8 m for both antennas). The position 
error at the 90th percentile is 1.5 m for fusion method 1 and 2. 

 

  

Figure 4.16: Performance of fusion methods for technique 3. 

 
As a conclusion, Bayes Classifier (technique 2) and Measurement fusion method 

(fusion method 1) presented the lowest position error: the average is 0.75 m and the 
90th percentile is around 1.1 m. Comparing these results with multi-antenna systems in 
the state-of-the-art, the study in [57] showed an average position error of 1.5 m with 3 
dB shadowing standard deviation. When increasing the number of antennas from 2 to 
14, the position error decreases from 2.3 m to 0.9 m but this performance is still higher 
than the one of the proposed system with only 2 antennas. 

 

4.5.2.1.3 Number of tags vs number of antennas trade-off 

Considering the use case of 30 tags and 15 tags for single and two-antenna system, 
Figure 4.17 shows the CDF for the best technique: Bayes Classifier (technique 2) and 
the best fusion method: Measurement fusion (fusion method 1). As aforementioned, the 
two-antenna configuration for 30 tags has better accuracy (with position error at the 
90th percentile bellow 1.5 m) than single antenna configuration. In addition, it can be 
also observed that the same or better accuracy is obtained with two antennas and 15 
tags compared to a single antenna and 30 tags. It would reduce the system costs. 

In the case of the number of tags is reduced to 6 tags per experiment, the use of 
the two antennas notably increases the accuracy of the system. The 90th percentile is 
less than 5 m as the red circle-mark line illustrates in Figure 4.18. For one antenna, 
this value is 8 m (black diamond-mark and yellow square-mark lines). Note that the 
best performance is not as good as the one with 15 tags and one antenna (blue cross-
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mark and magenta dashed lines) but 6 tags is less than the half part of 15 tags. The 
reason to keep 6 tags instead of 7 or 8 is because of the layout of the tags. 

 

 

Figure 4.17: 30 tags & 15 tags vs one & two antennas. 

 

 

Figure 4.18: 15 tags & 6 tags vs one & two antennas. 

 
Table 4.1 summarizes the mean, the MSE (Mean Square Error) and the 90th 

percentile of the position error for the different experiments. This table shows that 
with two antennas, the system accuracy is not the mean of both antennas but the 
performance indicators (mean, MSE and 90th percentile of the CDF) are much better 
than the performance indicators for a single-antenna.  

 
Table 4.1: Summary of number of antennas vs number of tags. 

 
30 tags  30 tags & 

two-antennas 
15 tags  15 tags & 

two-antennas A1 A2 A1 A2 
Mean (m) 1.39 0.93 0.75 1.77 1.35 1.1 
MSE (m2) 3.90 2.59 1.16 4.56 3.05 1.99 

90th percentile (m) 2.58 1.97 1.13 3.47 2.8 1.97 
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4.5.2.2 Cellular-based positioning system 

The evaluation of the cellular-based positioning system is based on the measured 
Cell IDs (𝐼𝐼𝛼) of UMTS technology as Appendix B concluded. As expected, the 
accuracy is much lower than RFID-based positioning system. Figure 4.19 shows the 
CDF of this cellular system where the position error is quite high. The 95th percentile 
is around 10 m. 

 

 

Figure 4.19: Position error of cellular-based positioning system. 

 
As previously mentioned, the cellular candidates are used to discriminate aberrant 

candidates proposed by the RFID-based positioning system rather than being an 
indoor positioning system itself.  

 

4.5.2.3 Opportunistic positioning system 

The integration of cellular technologies in single-antenna (A1) RFID-based 
positioning systems is evaluated. The period to calculate the estimated position was 
established in every 5 s, however, as the algorithms do not involve high computational 
costs, the position is estimated in 100 ms: 60 ms to get RFID candidates and 35 ms to 
get cellular candidates (parallel processes could reduce this time). Table 4.2 compares 
the results obtained with the RFID-based positioning system to the opportunistic 
positioning technique. Only centroid metric has been included in the table. 

On the one hand, for the RFID system the mean position error is below 2 m and 
the 95th percentile is around 4 m for technique 1 (∆𝑃𝑃𝑃 = 0.3 and ∆𝑃𝑃𝑃 = 0.9). On the 
other hand, the integration of cellular information into the discrimination procedure, 
discards some candidates that could be far away from the real position. Thanks to it, 
the proposed system is able to reduce the mean position error 15-25% in comparison to 
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the RFID-based positioning system. This enhancement provides mean position error 
values from 1.1 to 1.8 m. In the same context, the 95th percentile is reduced, reaching 
values from 2.2 m to 3.7 m. The “Bayes Classifier” and “Euclidean Distance” 
techniques are slightly improved when more than one candidate is selected (kic, k=5). 
In other case (k=1, mic), there is only one candidate and this opportunistic approach 
is not practical. For the best technique (Euclidean Distance, kic), results show 1.4 m 
for the 80th percentile and 1.8 m for the 95th percentile. 

 
Table 4.2: Summary of indoor positioning systems performance. 

 
Technique 1 
(∆𝑃𝑃𝑃 = 0.3) 

Technique 1 
(∆𝑃𝑃𝑃 = 0.9) Technique 2  Technique 3 

mic kic mic kic mic kic mic kic 
RFID System 

Mean absolute error (m) 
1.9 1.8 2.1 1.3 1.6 1.3 1.1 0.9 

RFID System 
MSE 

6.7 5.9 7.4 4.5 5.6 3.9 3.6 3.1 

RFID System 
95th percentile 

5.5 4.1 5.3 3.5 3.4 2.6 2.0 1.9 

Oportunistic System 
Mean absolute error (m) 

1.5 1.4 1.8 1.1 1.6 1.2 1.1 0.9 

Oportunistic System 
MSE 

5.5 4.0 5.8 3.7 5.6 3.7 3.6 3.0 

Oportunistic System 
95th percentile 

3.2 3 3.7 2.2 3.4 2.5 2.0 1.8 

 

Compared to other positioning systems with more than one technology in the state-
of-the-art, the work presented in [69] had a position error of 4 m at 90th percentile. 
Other works like in [63] had a mean position error of 1.5 m. Showing these results, the 
proposed system outperforms both of them, having a mean position error of 0.9 m and 
1.8 m for the 95th percentile. Focusing on corridors, this approach outperforms the 
system proposed in [51] where the mean position error was 5.9 m compared to 0.9 m.  

 

4.5.2.3.1 Sensitivity study of number of tags 

A sensitivity study has been performed to evaluate this approach in the same 
scenario with a low-dense number of tags. The number of tags has been reduced 
according to 1/2, 1/3 and 1/5 from the original amount (30 tags). Table 4.3 and Table 
4.4 present the MSE of the RFID system and the proposed system respectively. It 
could be observed in both tables how the less number of tags are placed, the worse 
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values are obtained. Furthermore, with high density of tags, cellular technology 
improves the location accuracy over the RFID system. However, when the number of 
tags is extremely reduced, the influence of cellular technology does not enhance the 
location error as much as expected. The reason is related with the low number of 
candidates the RFID system proposes. Therefore, the discrimination of cellular 
technology is much more limited to those candidates. 

 
Table 4.3: Sensitivity study of RFID system based on the number of tags (MSE). 

RFID System 
MSE 

Technique 1 
(∆𝑃𝑃𝑃 = 0.3) 

Technique 1 
(∆𝑃𝑃𝑃 = 0.9) Technique 2 Technique 3 

mic kic mic kic mic kic mic kic 
30 tags (ratio 1) 6.7 5.9 7.4 4.5 5.6 3.9 3.6 3.1 
15 tags (ratio 1/2) 15.6 9.9 9.1 6.5 9.2 6.0 5.6 4.8 
10 tags (ratio 1/3) 24.4 20.8 14.3 11.0 13.5 10.9 9.8 8.7 
6 tags (ratio 1/5) 43.8 38.9 31.7 21.2 26.7 19.6 16.9 14.6 

 

Table 4.4: Sensitivity study based on the number of tags (MSE). 

Integrated System 
MSE 

Technique 1 
(∆𝑃𝑃𝑃 = 0.3) 

Technique 1 
(∆𝑃𝑃𝑃 = 0.9) Technique 2 Technique 3 

mic kic mic kic mic kic mic kic 
30 tags (ratio 1) 5.5 4.0 5.8 3.7 5.6 3.7 3.6 3.0 
15 tags (ratio 1/2) 15.0 9.1 9.1 5.9 9.2 5.8 5.6 5.1 
10 tags (ratio 1/3) 23.1 11.8 12.2 8.1 13.5 10.7 9.8 9.6 
6 tags (ratio 1/5) 40.0 38.8 27.9 19.5 26.7 18.5 16.9 15.8 

 

4.5.3 Considerations for real deployments 

By the time of this work, cost of each active tag is in the range of tens of USDs 
(United States dollars) while a RFID reader rounds few hundred USDs costs. 
Therefore, the defined RFID system is based on the distribution of RFID tags in the 
infrastructure, while the localized platform (e.g., pedestrian equipment) to be 
positioned is provided with a RFID tag reader, which is the optimal solution if a 
reasonable amount of mobile devices are to be localized in a wide and complex area. In 
this way, the infrastructure costs are minimized, while placing the cost in the 
positioned object. This greatly reduces installation costs and allows the 
implementation of the system in large areas at minimum expense. Additionally, the 
commercial penetration of portable RFID readers is growing, being also included in 
mobile phones as peripherals or embedded systems [80]. In any case, scenarios where 
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the located system is equipped with RFID active tags instead of a transceiver (being 
the transceivers part of the fixed infrastructure of the scenario) are also possible [81] 
[82], keeping the same general scheme and conditions in terms of performance and 
architectural needs. 

In order to cover an entire floor of a public building of some hundreds square 
meters with passive tags, a few hundreds readers must be deployed, as their read range 
is 1-3 m. Using active tags allows to cover a whole floor, without increasing the total 
number of tags. Further studies on the optimal number of tags and their placement 
are being carried out for the corridor [83] and the entire floor. Therefore, active RFID 
solution still cost effective when covering large areas even if we locate a hundred of 
mobile readers. 

In the proposed approach, the main elements of classical architectures for RFID-
based positioning are maintained: a remote localization server performs the calculation 
of the position based on the signals received from the RFID tags and the previously 
stored fingerprinting data. The only additions to this classic structure imply the 
inclusion of cellular signal fingerprint information as part of the localization server 
databases and the existence of a cellular receiver as part of the localized platform. The 
cellular receiver may be already part of the localized platform (e.g., for 
communications reasons). Otherwise, adding the cellular receiver to the previously 
existing pure RFID platforms can be done at a very low cost due to the wide 
popularity of the cellular technology: a low-budget smartphone may be enough. 
Additionally, the increasing availability of RFID commercial portable readers for 
active RFID tags could make this approach even more accessible for pedestrian 
applications in the close future. 

The acquisition of cellular technologies fingerprinting data should also not suppose 
any significant cost in terms of the calibration phase, as the cellular scenario 
characterization can be performed simultaneously to the RFID one.  

A shortcoming of the proposed system is that if the cellular infrastructure changes 
due to modifications done by operators (e.g., change of configuration parameters) or 
failure, the accuracy of the cellular based discrimination can be jeopardized and a new 
calibration phase may be required. This is the same case as for changes in the RFID 
infrastructure, but the latter are usually more accessible and under the control of local 
administrators. In order to overcome this challenge, coordination between the mobile 
operator and the positioning system should be defined, fitting in the initiated process 
by cellular standardization aiming to integrate localization (including the one coming 
from third party solutions) as part of the standard architecture interfaces [84]. 



 
Indoor positioning strategies  81 

Another issue arises when the indoor area is covered by only one (or few) base 
stations, which makes the cellular information useless or not be as helpful as expected. 
However, the experience has shown that most time a certain level of signal is received 
from several cells simultaneously (it does not mean the quality of the signal is 
appropriate to attempt a call) or cellular technologies. Furthermore, the increasing 
deployments of small cells will help to further avoid this restriction. 

To conclude, the use of common application layer apps for the mobile terminal is 
assumed as the source of signal information. However, one of the main limitations of 
some terminals (due to their manufacturers) is their inability to report information 
about neighbor cells (e.g., PRX, Cell ID, etc.). That issue would affect the 
fingerprinting procedure as it could suffer from lack of information. However, 
handover/cell-reselection process would be useful in order to overcome this lack of 
information from several cells. Regarding this issue, this study has taken into account 
that restriction, focusing on this kind of terminals (e.g., Samsung) as a high percentage 
of smartphones has this limitation. 

 

4.6 Conclusions 

An active UHF RFID-based positioning solution in a corridor has been analyzed. 
Several techniques and data fusion methods for multi-antenna reader and the 
fundamentals for innovative and opportunistic use of GSM and UMTS technologies 
with these systems have been presented.  

The approach is evaluated in a real corridor field-trial, comparing the position error 
of single-antenna and two-antenna readers, for different positioning techniques 
(number of RSSI matches, Bayesian Classifier and Euclidean Distance) and applying 
the proposed method for multi-antenna data fusion (measurements, ranked candidates, 
filtered candidates and estimated positions). The best results with the multi-antenna 
approach are obtained with a Bayes Classifier and measurements fusion. In this case, 
the achieved mean position error is 0.75 m and the 90th percentile is 1.1 m. The 
proposed solution achieves better accuracy than previous RFID solutions experimented 
in corridors, even with other technologies and indoors scenarios. 

Additionally, a trade-off between the number of antennas and the number of tags 
has been presented. This study shows that the two-antenna approach can provide 
equivalent accuracy as single-antenna approach but half number of tags in the 
infrastructure. 
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Finally, the analysis assesses the possibilities of using signals coming from already 
existent non-positioning oriented cellular networks to provide support to RFID-based 
indoor positioning mechanisms, which could highly benefit of such pre-existent 
communications infrastructure. Furthermore, the use of a first-approach, fingerprinting 
mechanism for positioning shows promising results in terms of accuracy enhancement. 
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Chapter 5 

5 Indoor mobility load balancing 
techniques 

 

 

This chapter is focused on the development of novel MLB mechanisms to mitigate 
temporary traffic fluctuations and focused network congestion issues in open access 
LTE femtocell networks in commercial and corporate environments.  

The structure of this chapter is as follows: Section 5.1 introduces MLB techniques 
in indoor scenarios. Section 5.2 details the related work. Section 5.3 formulates the 
problem description. Section 5.4 describes some MLB mechanisms for corporate 
femtocell networks. In addition, Section 5.5 presents the design of innovative MLB 
mechanisms based on context information. Section 5.6 and Section 5.7 evaluates the 
proposed methods in a simulator and field trials, respectively. Finally, Section 5.8 
summarizes the main conclusions of this chapter. 

 

5.1 Introduction 

Most cellular communications take place at indoor environments (at work, home, 
shopping malls, etc.) [1] [10], especially in commercial and corporate scenarios. Hence, 
operators tend to deploy small cells, such as femtocells, indoors to enhance network 
capacity, to reduce outage coverage areas, to provide high-speed data traffic, etc. 

In this indoor scenarios, voice calls and data traffic, as well as local user densities, 
vary in temporal and spatial domain. Those situations lead to degraded indoor cellular 
networks because many people want to use their mobile devices at the same time, close 
to the same area and/or for a short period. For example, people waiting for a delayed 
flight at the boarding gate of the airport could collapse a femtocell for a while or, a 
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celebrity walking through a mall where everybody is interested in taking pictures and 
sharing them instantaneously in social networks or calling friends to share the 
experience. A simple solution to support these extreme situations could be to plan the 
network resources according to the peak traffic. Nevertheless, this solution would 
increase operators’ expenditure. 

The self-optimization use case of Mobility Load Balancing (MLB) has been 
proposed by 3GPP [45] to solve these situations. MLB use case aims to shift users 
from overloaded cells to other cells with spare resources. These MLB techniques tune 
network configuration parameters to reach a better configuration that alleviates the 
congestion situation. Focusing on indoor and femtocell environments, the following 
parameters are mainly modified: 1) femtocells handover margins to resize service areas 
and/or 2) femtocells transmission powers to resize cell coverage areas.  

Compared to traditional macrocells, femtocells are simple and efficient access 
points which present hardware restriction in the number of simultaneous active users. 
This means, the number of active users is usually limited from 2 to 64 by power of two 
(depending on the femtocell model [31]). As usual, the number of users that can be 
properly served also depends on the availability of radio resources of the cell. However, 
the limitation in the maximum number of connected users is commonly much more 
critical than the availability of resources, since the bandwidth normally supports 
higher number of simultaneous users than the femtocell is able to manage. 

SON mechanisms are commonly based on network alarms, counters and KPIs, or 
estimated information from radio propagation models. However, nowadays, smart-
devices and its embedded sensors (e.g., accelerometers, gyroscopes, etc.) and 
applications, measure and provide additional context information such as users’ 
position, WiFi Service Set IDentifier (SSID), temperature, etc., that could be used by 
SON mechanisms to both accelerate their convergence and improve their performance. 
Focusing on users’ position, that information could be easily obtained at indoor 
environments thanks to the immediate interest on indoor LBS. That means, new key 
location-aware applications for emergency response, advertising, healthcare, domotics, 
etc. are showing up. Based on this, indoor positioning mechanisms have to evolve in 
order to be accurate and robust systems, being a hot topic in both academia and 
industry (e.g., Google Maps - Indoor). 

Additionally, classical MLB methods might not properly work in indoor femtocell 
networks due to the special characteristics of femtocells (restriction in the number of 
users per femtocell, unplanned deployments, short-range, etc.), indoor environments 
characteristics (multi-path reflections, occasional events, etc.) or users’ indoor mobility 
pattern (increase number of handovers, etc.). Hence, the development of new MLB 
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mechanisms based on context information from external mobile network sources might 
improve the performance in commercial and corporate environments. 

The main contributions of this chapter are:  

• The design of innovative MLB mechanisms in commercial and corporate LTE 
femtocell networks with open access. 

• The integration of context-aware information into novel MLB methods. 

• The reduction of temporal and focused overloaded situations at commercial and 
corporate indoor scenarios due to the high concentration of users in temporal 
and spatial domain. 

• The estimation of the impact of indoor positioning system accuracy on the 
designed location-aware MLB mechanisms. 

Finally, the proposed SON methods are discussed and compared in both, simulator 
and field trial scenarios to evaluate their capabilities. 

 

5.2 Related work 

Among SON techniques and focusing on self-optimization mechanisms, several 
works have been centered on the macrocell case in both, literature and European 
projects [7] [8] [9]. By contrast, indoor environments present hard and difficult 
conditions to manage the cellular network due to the cell overlapping, lack of coverage, 
interference, etc. This implies a challenge for researchers and engineers in the 
development of SON mechanisms. In this sense, self-x techniques in femtocell networks 
are currently a hot topic [12] [13] [14] [85] [86] [87] [88] [89] [90]. 

MLB mechanisms have been also widely studied by both, academia and industry, 
at outdoor and indoor scenarios [4] [5] [6] [15] [16] [17] [91] [92] [93] [94] [95]. The most 
suitable solution to reduce or avoid cellular congestion situations is by resizing the cell 
coverage areas. It could be addressed from two ways: tuning physical parameters in 
the cell (e.g., antenna tilt [96] or pilot transmission power [94]) or changing parameters 
in Radio Resource Management (RRM) processes (e.g., handover, HO, [92] or cell 
reselection, CR, [97] parameters). The best configuration parameters could be found by 
formulating classical optimization problems [18]. However, information to build the 
analytic models is rarely available, thus, the operators use heuristic methods. 

Concerning MLB mechanisms in corporate femtocell environments, simple and low-
complexity methods based on FLCs are proposed in [15], which investigated the 
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problem of re-distributing traffic demand between LTE femtocells. A similar fuzzy 
logic approach is presented in [16], where cell transmission power and handover 
margins are tuned to solve congestion problems on traffic distribution in enterprise 
LTE environments. A more computationally complex method [17] obtained better 
performance than previous studies through a fuzzy rule-based reinforcement learning 
system, while reference [95] proposed a distributed method to achieve automatic load 
balancing based on a flowing water method. However, none of the previous works 
analyzed the femtocell limitations in the maximum number of simultaneous connected 
users (macrocells or other type of small cells do not have such a restricted condition), 
which could degrade the network performance. In addition, those previous works were 
designed to solve localized and persistent congestion problems since a long time was 
usually necessary to obtain the optimized parameters, disregarding the challenge 
related to temporary congestion issues at indoor environments. The femtocell 
limitation in the maximum number of simultaneous users was taken into account in 
[88], where a handover algorithm based on the users’ speed and QoS was proposed. 
That work evaluated whether a handover was necessary or not according to the 
previous metrics (speed and QoS), but the algorithm was not analyzed under overload 
situations. 

Some other mechanisms introduced the use of context information in self-
optimization methods. More specifically, in location-awareness, the authors in [18] 
introduced users’ position into the MLB mechanisms to reduce handovers and call 
blocking rates in overloaded cells by modifying the coverage area. However, it was 
focused on outdoor UMTS macrocell networks. In [14], a method that adjusted 
hysteresis margins depending on an estimation of the distance from the cell to the 
terminal, reduces the number of redundant handovers while keeping the throughput of 
femtocells as high as possible. But, it did not take into account the number of active 
users in the femtocells. The work in [94] presented a dynamic power control for 
balancing data traffic in femtocell networks. It built Voronoi diagrams based on 
COST231 multi-wall radio propagation model to estimate the data traffic per femtocell 
based on the users’ position. However, the integration of this mechanism into a real 
environment was limited to the values calculated with the propagation model. 
Furthermore, it only analyzed the network load in terms of occupied radio resources 
(traffic volume). Other studies utilized users’ position in their SON mechanisms [98] 
[99] [100]. Nevertheless, those works are out of the scope of MLB use case. 

The MLB techniques proposed in this chapter are based on resizing cell areas by 
modifying cell transmission power. In this context, reference [100] introduced the 
fingerprinting technique as a method for cellular optimization. It compared the PRX 
measurements with a propagation model to predict the PRX. However, that work was 
oriented to outdoor environments. Conversely, the study in [94], as previously 
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mentioned, was focused on femtocell networks and presented a balancing data traffic 
method by resizing cell area based on PRX and users’ position. The authors in [101] 
and [102] analyzed the PRX in the handover decision process. Another work [103] 
applied a sliding window function on the PRX measurements to proceed with the 
decision. Although some of them analyzed the users’ position, none of them took into 
account the number of active users in the femtocells or the way the users are located 
in the scenario. 

Based on these works, the designed MLB mechanisms will focus on the prevention 
or reduction of temporary network congestion issues in open access LTE femtocells and 
commercial or corporate environments. This goal is accomplished by changing cell 
transmission power, hence, the cell service areas. In addition, the algorithms will be 
supported by classical mobile network indicators and context information such as 
users’ position to be able to improve the network performance in short period. 

 

5.3 Problem description 

Femtocells are proposed as a solution to solve some of the current cellular 
challenges. Due to the proximity between femtocells and users, the user battery 
lifetime is increased and the user Quality of Experience (QoE) is enhanced. At the 
same time, operators also reduce CAPEX and OPEX. Nevertheless, femtocell networks 
present some shortcomings that must be addressed. Some of them are the 
unpredictable occurrences or occasional events that could provoke unexpected overload 
conditions in the network. These temporal and spatial variations, combined with the 
coverage holes and time-variant fading caused by reflections and obstacles, could 
negatively affect network performance. 

 

5.3.1 Operators’ policy 

From the point of view of femtocell versus macrocell use, the operators could decide 
two different policies. On the one hand, the operator could be interested in a macrocell 
offload solution where macrocell data traffic hands over to femocells (when possible) to 
increase network capacity. Hence, once the femtocell is full (e.g., the maximum 
capacity of active users is reached), new incoming voice calls (e.g., VoLTE - Voice over 
LTE) that attempt to access are redirected to the macrocell, while the incoming data 
connections are accepted after handing over a voice traffic call to the macrocell. That 
situation could block many voice calls if the quality of the macrocell signal is poor 
indoors. 
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On the other hand, other operators could conversely decide that femtocell 
deployments are aimed at enhancing the signal quality and extend the coverage at 
indoor environments where the macrocells present bad conditions (coverage holes, poor 
signal, etc.). According to this policy, the operator would prefer that indoor voice calls 
are carried out through femtocells and indoor data services hand over to the macrocell. 
The reason is related to the user point of view. These operators consider that, once the 
femtocell is full, the client frustration is higher when a voice call is rejected or dropped 
than when the client has no access to any other service. Therefore, the priority to 
accept an incoming voice call is higher than to accept data traffic. Consequently, those 
data connections should hand over to the macrocell when an incoming voice call 
attempts to access a crowded femtocell. 

Additionally, the impact of mobility failures on VoLTE calls is discussed in the 
recent drive test presented in [104], where the Handover Failure Ratio (HFR) for 
pedestrian users is over 21%, which is an unacceptable user experience for operators.  

 

5.3.2 Network configuration parameters 

MLB algorithms set different radio configuration parameters to adjust service 
areas. Consequently, the traffic is shared along the network by handing over those 
users served by a congested cell to the most suitable neighboring cell with spare 
resources. The most typical configuration parameters to resize cell areas are:  

• HandOver Margin (HOM): The HOM parameter determines the minimum 
exceeded PRX from a neighboring cell 𝑖 compared to a serving cell 𝑗 in order to 
trigger a power budget (PBGT) HO from 𝑐𝑐𝑐𝑐𝑗 to 𝑐𝑐𝑐𝑐𝑖. Hence, a PBGT HO is 
triggered when: 

 
𝑃𝑃𝑃������(𝑐𝑐𝑐𝑐𝑖) >  𝑃𝑃𝑃�������𝑐𝑐𝑐𝑐𝑗� + 𝐻𝐻𝐻�𝑐𝑐𝑐𝑐𝑗 , 𝑐𝑐𝑐𝑐𝑖�,  (5.1) 

 
where 𝑃𝑃𝑃������(𝑐𝑐𝑐𝑐𝑖) and 𝑃𝑃𝑃�������𝑐𝑐𝑐𝑐𝑗� are the average PRX from the serving cell 𝑗 
and neighboring cell 𝑖 in dBm, respectively. 𝐻𝐻𝐻(𝑐𝑐𝑐𝑐𝑗 , 𝑐𝑐𝑐𝑐𝑖) is the handover 
margin in dB from cell 𝑗 to cell 𝑖.  

An overloaded cell j could decrease its HOM(j,i) to force users to start the 
handover process to move to a low-loaded neighboring cell i. For that purpose, 
the HOM(j,i) should be reduced ∆ dB. This MLB technique is illustrated in 
Figure 5.1. 
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Figure 5.1: MLB based on HOM parameter. 

 
HOM is adjacency-based defined as observed in equation (5.1). Hence, the 
influence of tuning this parameter in a single adjacency is only referred to that 
particular adjacency. However, to avoid ping-pong effects and instabilities in the 
HO process, changes in both directions of the adjacency should be 
complementary (i.e., if the HOM from cell 𝑗 to 𝑖 is reduced by ∆ dB, the HOM 
from 𝑖 to 𝑗 is increased by ∆ dB). This reasoning presents a shortcoming; those 
attempt calls in the border of the cell 𝑗 might handover to its neighboring cell 𝑖 
immediately. To avoid this behavior, the same modifications should be done in 
the cell reselection process.  

• Cell transmission power (PTX): The coverage area of a cell can also be 
modified by adjusting its transmission power, PTX(j) as Figure 5.2 shows. A 
higher/lower transmission power in a base station is directly linked to 
higher/lower received signal levels in that cell, which has an influence on cell 
dominance areas. Unlike HOM, transmission power is defined on a cell basis, so 
that all neighbors are equally affected by changes in the transmission power of a 
cell. In addition, normally both pilot and data power are jointly tuned to not 
only impact in connected users (HO process) but also in idle users (CR process). 

Resizing cell coverage areas might impact negatively on the QoE of some users. In 
LTE networks, this shortcoming is partly alleviated by adaptive modulation and coding 
(ACM). Nevertheless, a carefully study of the adaptation of radio configuration 
parameters should be performed in MLB techniques to keep a satisfactory level of 
QoE. 

As aforementioned, cell transmission power is the radio configuration parameter 
that would be tuned in the proposed MLB mechanisms. 
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Figure 5.2: MLB based on PTX(j) adaptation. 

 

5.3.3 Key performance indicators 

Since for some operators the overall users’ satisfaction is more critical in voice calls 
rather than in any other kind of service, in the proposed algorithms data traffic users 
are handed over to macrocells when a femtocell is considered overloaded. Additionally, 
the periodicity to trigger the mechanism should be low to solve temporal network 
congestions in indoor environments. These cellular networks usually present a 
frequency reuse of, at least, 2 to reduce interference issues. 

Temporal network congestions must be solved from two perspectives: 

• From the user point of view: the performance is measured according to the 
user experience, which can be mainly improved by minimizing two network 
indicators: the Call Blocking Ratio (CBR) as the ratio of the number of calls 
that attempt to access the network but fail (𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐) to the number of calls 
that attempt to access the network (𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐):  

 

𝐶𝐶𝐶 =  
𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐

𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
=

𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑎𝑙𝑙𝑙

𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏_𝑐𝑐𝑐𝑐𝑐  +  𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
, (5.2) 

 
and, the Connection Dropping Ratio (CDR) as the ratio of the number of 
dropped connections in the network (𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) to the number of 
active connections in the network (𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐). CDR depends on the channel 
quality and the availability of network resources, i.e., a bad Signal to 
Interference-plus-Noise Ratio (SINR) of users (𝐶𝐶𝐶𝑞) or the lack of temporary 
resources (𝐶𝐶𝐶𝑠):  
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𝐶𝐶𝐶 =  
𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
. (5.3) 

 
To summarize this information into one indicator that measures the users’ 
dissatisfaction, the User Dissatisfaction Ratio (UDR) [105] is used and it is 
calculated following a similar expression as 𝑈𝑈. It is interpreted as a 
combination of CBR and CDR: 

 
𝑈𝑈𝑈 =  𝐶𝐶𝐶 + (1 − 𝐶𝐶𝐶) ∙ 𝐶𝐶𝐶. (5.4) 

 
This indicator is also a valuable parameter from the operator point of view as 
the experimented users experience is important to keep clients. 

Additionally, the quality of the signal received by the users should be also taken 
into account: the Channel Quality Indicator (CQI) in LTE networks. This 
indicator is reported by the users to the base station. In this sense, the mean 
CQI (MCQI) is calculated as: 
 

𝑀𝑀𝑀𝑀 = 𝐶𝐶𝐶 =
1

𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
� 𝐶𝐶𝐶𝑢

𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐

𝑢=1

, (5.5) 

 
where 𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐 is the number of active users and 𝐶𝐶𝐶𝑢 the quality 
experienced by the user 𝑢. CQI is a number from 0 (very bad channel quality) 
to 15 (very good channel quality). A high value is desirable in this indicator. 

• From the operator point of view: in addition to the previous indicators, an 
important criterion is also given by the amount of signaling data necessary to 
control the network fluctuations. A key indicator to measure that information is 
the User Handover Ratio (UHR) [17], described as the number of handovers 
over the accepted calls: 

 

𝑈𝑈𝑈 =  
𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐
, (5.6) 

 
where 𝑁ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 represents the number of handovers and 𝑁𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐 the 
number of accepted calls in the same period. Low values of UHR are desirable. 

Therefore, the proposed heuristic methods aim to shift traffic from overloaded 
femtocells to low-loaded femtocells by resizing the services areas, while a good trade-off 
between the described indicators is pursued. To accomplish this goal, the femtocells 
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transmission power is adjusted according to the study of some network indicators: 
ratio of active users, ratio of occupied radio resources, etc. and some external network 
information: users’ position.  

 

5.4 Methods for MLB in femtocell networks 

Several MLB methods have been proposed in the literature, as described in Section 
5.2 “Related work”. MLB mechanisms for femtocell networks could be based on 
different techniques or controllers. Simple and elementary equations can be applied for 
this use case [6]. However, the best system configuration is usually hard to find. Other 
mechanisms based on FLCs [16], where efficient rules are defined by experts, present 
adaptive solutions to reach the best system configuration. Some others propose 
complex equations or techniques [95], even based on FLCs [17], which lead to high 
computational cost not really feasible to be implemented in real deployments. 

The MLB mechanisms proposed in the following subsections are based on FLCs. 
The main reasons for choosing FLCs are related to the easiness for the integration and 
translation of expert human knowledge into a set of fuzzy rules, its simplicity for 
implementation and managing rules based on experience and the low computational 
cost. 

 

5.4.1 Fuzzy-based MLB mechanisms 

The basic structure of an MLB mechanism based on FLC in cellular networks is 
depicted in Figure 5.3. The inputs of the FLC approach can be alarms, counters 
and/or KPIs acquired from network statistics or call traces, being the collection of this 
information a standard and usual procedure in cellular networks. Other inputs, such as 
a feedback of the FLC outputs, are also of interest. The outputs propose the 
reconfiguration of cellular network parameters. Further information about the 
functions and parameters of FLCs are detailed in Appendix C. 

A reference fuzzy-based MLB mechanism [16] and newly proposed fuzzy-based 
MLB methods are detailed below. The number of input indicators provided to each 
method is two (as Figure 5.3 shows). Depending on the algorithm, these two input 
indicators could be classical indicators (such as CBR or ratio of occupied radio 
resources), the feedback of the FLC, or the indicator: ratio of active users. In 
consequence, new membership functions as well as fuzzy rules must be designed 
according to each input indicator. 
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Figure 5.3: Fuzzy inference system. 

 

5.4.1.1 Power Traffic Sharing (PTS) - Baseline 

This method, presented in [16], has been selected as the reference fuzzy-based MLB 
algorithm. The FLC inputs are the difference between CBR of the analyzed serving 
cell 𝑐𝑐𝑐𝑐 and the average CBR of its neighbors, (𝐶𝐵𝐵𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐)), as well as the current 
femtocell transmission power deviation from the default transmission power value, 
∆𝑃𝑃𝑃(𝑐𝑐𝑐𝑐). The latter, ∆𝑃𝑃𝑃(𝑐𝑐𝑐𝑐), is calculated as the default femtocell transmission 
power value (normally maximum transmission power), 𝑃𝑃𝑃𝑚𝑚𝑚(𝑐𝑐𝑐𝑐), minus the 
current femtocell transmission power 𝑃𝑃𝑃(𝑐𝑐𝑐𝑐). The output of the algorithm, 
𝛿𝛿𝛿𝛿(𝑐𝑐𝑐𝑐), is the transmission power that must be tuned (increase or decrease) in the 
femtocell in that moment. 𝛿𝛿𝛿𝛿(𝑐𝑐𝑐𝑐) affects both pilot and data transmission power. 

This optimization procedure improves the performance in heavily loaded enterprise 
femtocell networks by distributing the users along the unloaded femtocells. 
Nevertheless, this algorithm is not suitable to solve temporary congestion issues due to 
the proposed CBR indicator provides valuable information once the network already 
presents accessibility issues. A prediction of this inconvenient situation would be 
desirable to avoid or reduce users’ dissatisfaction as soon as possible. Therefore, this 
algorithm cannot achieve the optimal network configuration parameter under 
temporary traffic fluctuations. For further details about the PTS method, the reader is 
referred to the original work [16]. 

 

5.4.1.2 Power Load Sharing (PLS) 

This algorithm, which was originally presented in [15], aims to avoid the previous 
PTS issues. Following the same scheme, the first step is to change the inputs of the 
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algorithm to prevent blocked calls. According to this, the new input indicator is 
related to bandwidth, by measuring the current cell capacity in radio resource terms. 
This indicator is hereafter described for LTE networks, although equivalent indicators 
can be defined for other technologies. Therefore, in PLS method, the load balance is 
performed based on the occupied PRB, whereas the previous PTS optimizer depended 
on blocked calls. According to this, the key network indicator for this system is 
represented as the following function, which is calculated for each cell: 

 

𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) =  𝐿𝐿𝐿𝐿(𝑐𝑐𝑐𝑐) −
1
𝑁
� 𝐿𝐿𝐿𝐿(𝑖)

𝑁

𝑖=1
, (5.7) 

 
where 𝑁 is the number of neighboring cells and 𝐿𝐿𝐿𝐿(𝑖) is the ratio of occupied PRBs 
of the cell 𝑖, defined in equation (5.8). 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) is used as FLC input together 
with the femtocell transmission power deviation ∆𝑃𝑃𝑃(𝑐𝑐𝑐𝑐). 

 

𝐿𝐿𝐿𝐿(𝑖) =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑖)
𝑚𝑚𝑚 _𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐(𝑖)

. (5.8) 

 
The method in [15] has been modified for solving temporary overloaded situations. 

The difference compared to [15] consists of changing the membership functions and 
fuzzy rules to converge to the optimal configuration in the shortest time. Hence, the 
range of outputs of the FLC is larger (from ±2 dB to ±6 dB). In this context, based 
on expert knowledge, some membership functions and fuzzy rules configurations have 
been evaluated. A large enough number of membership functions has been selected to 
achieve a reasonable level of detail while keeping the number of fuzzy sets small 
enough to build easy sets of fuzzy rules.  

Figure 5.4(a) shows the three membership functions of 𝜇𝑥(∆𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)). It analyzes 
if femtocell transmission power deviation is very negative “Very Negative”, negative 
“Negative” or zero “Zero”. These functions were proposed by the PTS method and 
they are the same in PLS method to accomplish consistent and comparable results. 
The function 𝜇𝑦(𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐)), in Figure 5.4(b), depicts five membership functions to 
characterize the inputs in “Very Negative”, “Negative”, “Zero”, “Positive” and “Very 
Positive” according to the difference between the studied cell load ratio and the 
average load ratio of its neighboring cells, keeping the symmetry around 0 (i.e., the 
point where the load ratio between the studied cell and its neighbors is the same) to 
balance the load in the network. Each membership function is defined in an interval 
based on the expert knowledge, and for simplicity and computational efficiency, the 
selected membership functions are trapezoidal and triangular. 



 
Indoor mobility load balancing techniques 95 

 

(a) Input 1 

 

(b) Input 2 

 

(c) Output 

Figure 5.4: Membership functions of PLS method. 

 
Table 5.1 defines the common-sense fuzzy rules in the form of “if-then” statements, 

following the syntax of equation (C.1) in Appendix C. These rules are built to balance 
the load in the network. In consequence, the more positive the 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) is (i.e., 
the studied cell is overloaded), the more negative the transmission power deviation 
should be (rules 10 and 11), and vice versa (rules 1 to 6). In case the network is 
balanced (𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 = "𝑍𝑍𝑍𝑍"), the algorithm tends to return to the initial transmission 
power configuration in order to improve SINR and reduce the number of PRBs per 
user as the CQI is increased (rules 7 to 9). In consequence, the cell would have more 
available free resources decreasing the probability of cell congestion. 

Based on the output function 𝜇𝑧(𝛿𝛿𝛿𝛿(𝑐𝑐𝑐𝑐)) shown on Figure 5.4(c), the femtocell 
transmission power is increased or decreased 𝛿𝛿𝛿𝛿(𝑐𝑐𝑐𝑐). The functions can take the 
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following labels and values: “Very Negative” and −6 dB, “Negative” and −3 dB, 
“Zero” and 0 dB, “Positive” and +3 dB and “Very Positive” and +6 dB. Finally, the 
femtocell transmission power 𝑃𝑃𝑃(𝑐𝑐𝑐𝑐) is tuned according to the output. 

 
Table 5.1: Fuzzy rules of PLS method. 

 Loaddiff Operator ∆PTx δPTx 
 IF THEN 
1 Very Negative AND Very Negative Very Positive 
2 Very Negative AND Negative Very Positive 
3 Very Negative AND Zero Positive 
4 Negative AND Very Negative Very Positive 
5 Negative AND Negative Positive 
6 Negative AND Zero Positive 
7 Zero AND Very Negative Very Positive 
8 Zero AND Negative Positive 
9 Zero AND Zero Zero 
10 Positive AND - Negative 
11 Very Positive AND - Very Negative 

 

This method has been defined focusing on an LTE network, although it could be 
easily extended to any other cellular technology. The PRB is bandwidth-related, 
therefore, an equivalent available bandwidth indicator can be used as input for any 
other cellular technologies. 

 

5.4.1.3 Power User Sharing (PUS) 

Femtocells are usually designed to support from 2 to 64 users in connected mode, 
either voice or data traffic [32]. Rather than a wireless cellular bandwidth limitation, 
this characteristic is a restriction in the femtocell processing capability. For that 
reason, PRBs activity (as proposed in the PLS method) may not be always an 
appropriate indicator for balancing traffic in femtocell environments where most of the 
time there could be free resources to allocate user data but the femtocell is not able to 
process them due to the limit in the maximum number of active users. According to 
this, this PhD thesis proposes the PUS method, which considers the number of users in 
connected mode as the main indicator to offload temporary congested cells. 

In this case, the input indicator of the FLCs is defined as the ratio of active users, 
i.e., the number of simultaneous users in connected mode 𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢, to the 
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femtocell user limitation 𝑚𝑚𝑚_𝑢𝑢𝑢𝑢𝑢 (see equation (5.10)) of the studied cell 
𝑈𝑈𝑈𝑈(𝑐𝑐𝑐𝑐), in relation to the same average ratio in its neighboring cells 𝑈𝑈𝑈𝑈(𝑖):  

 

𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) =  𝑈𝑈𝑈𝑈(𝑐𝑐𝑐𝑐) −
1
𝑁
� 𝑈𝑈𝑈𝑈(𝑖)

𝑁

𝑖=1
, (5.9) 

 
where 𝑁 is the number of neighboring cells and 𝑈𝑈𝑈𝑈(𝑖) is defined for a cell 𝑖 as: 

 

𝑈𝑈𝑈𝑈(𝑖) =
𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢(𝑖)
𝑚𝑚𝑚_𝑢𝑢𝑢𝑢𝑢(𝑖)

. (5.10) 

 
This mechanism presents the same FLC structure as the previous PTS and PLS 

methods, but the inputs of the FLC are the new indicator, 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) as presented 
in equation (5.9), and the femtocell transmission power deviation, ∆𝑃𝑇𝑇(𝑐𝑐𝑐𝑐). The 
output of the FLC would increase/decrease the current femtocell transmission power. 

In order to get a moderate level of detail and straightforward fuzzy control rules, 
an acceptable number of membership functions have been selected for each indicator 
based on experienced human knowledge. The membership functions of this controller 
are shown in Figure 5.5. As it can be observed, the membership functions 
𝜇𝑥(∆𝑃𝑃𝑃(𝑐𝑐𝑐𝑐)) are the same as the previous membership functions of the PTS and 
PLS methods (Figure 5.5(a)), and the membership functions, 𝜇𝑦(𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐)), of the 
new input, 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐), are: “Very Negative”, “Negative”, “Zero”, “Positive” and 
“Very Positive” (Figure 5.5(b)). Notice that the shape of these membership functions 
are similar to those of the previous method. However, the interval of definition is 
adjusted by experts to get the best algorithm’s performance. For simplicity and 
computational efficiency, the implemented membership functions are triangular and 
trapezoidal. 

Fuzzy rules are depicted in Table 5.2 and aim to equalize the ratio of active users 
in the studied cell and the average ratio of its neighboring cells. According to this, the 
more positive 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) is (i.e., the ratio in the studied cell is high), the more 
negative the transmission power deviation should be (rules 8 and 9), and vice versa 
(rules 1 to 4). Once the network is equalized (𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) = "𝑍𝑍𝑍𝑍"), the PUS 
method avoids very negative transmission power adaptations (label “Very Negative” - 
rule 5) in order to increase the end-users QoE. However, as this method is restricted 
by the number of users (instead of the available resources in the cell), returning to the 
default transmission power could increase the interference but the cell congestion 
would not be reduced. That is why “Negative” or “Zero” values of transmission power 
deviation (rules 6 and 7) do not return to the default value. 



 
98  Indoor mobility load balancing techniques 

 

(a) Input 1 

 

(b) Input 2 

 

(c) Output 

Figure 5.5: Membership functions of PUS method. 

 
The same output functions 𝜇𝑧(𝛿𝛿𝛿𝛿(𝑐𝑐𝑐𝑐)), as in previous algorithms, are defined 

for this one (illustrated on Figure 5.5(c)). 

Most of the time, this mechanism is suitable for achieving good performance in 
femtocell networks, above all in LTE deployments which support high-peak data rates 
up to 346 Mbps in the downlink and 85.5 Mbps in the uplink at 20 MHz and 4x4 
MIMO. However, it could present some shortcomings when propagation channel is 
very poor (bad SINR) or users require high transmission rates (e.g., to watch 
streaming television in high definition). 
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Table 5.2: Fuzzy rules of PUS method. 

 Userdiff Operator ∆PTx δPTx 
 IF THEN 
1 Very Negative AND Very Negative Very Positive 
2 Very Negative AND Negative Very Positive 
3 Very Negative AND Zero Positive 
4 Negative AND - Positive 
5 Zero AND Very Negative Positive 
6 Zero AND Negative Zero 
7 Zero AND Zero Zero 
8 Positive AND - Negative 
9 Very Positive AND - Very Negative 

 

5.4.1.4 Power Load and User Sharing (PLUS) 

The previous mechanisms, as explained, might not guarantee their proper operation 
in some situations. The shortcomings of each algorithm (PLS and PUS methods) could 
be complemented by the other, leaving outside the PTS method due to the long time 
needed to evaluate its main indicator (CBR). That means, the analysis of the two 
indicators (cell load and number of active users) is required to ensure an efficient MLB 
process in femtocell networks. According to this, the works described in the literature 
in the context of MLB at femtocell networks that did not analyze at least these two 
indicators, might not properly work. However, in case the operators’ policies and 
priorities are focused on voice traffic (e.g., VoLTE), the analysis of active users might 
be enough while for data traffic, the analysis of radio resources would be desirable.  

In the proposed PLUS method, both previously defined indicators (𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) 
and 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐)) are the inputs of the FLC to properly prevent or reduce occasional 
indoor congestions. For simplicity, this method does not include the cell transmission 
power deviation as an input indicator. 

The same membership functions proposed for PLS and PUS methods are 
implemented in this FLC to compare these methods under the same conditions (reader 
is referred to Figure 5.4(b) and Figure 5.5(b)).  

New fuzzy rules are defined based on these two indicators and the expert 
knowledge. Table 5.3 presents the set of control rules implemented in this system. 
These rules prioritize the indicator 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑 over the 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 since a new user in a 
femtocell network usually implies a greater impact on the maximum allowed number of 
user than on the available resources. That means, the network resources assigned to 
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each user could be reduced in order to accept new users, even if some of them could be 
slightly dissatisfied (decrease the QoE, throughput, etc.). For example, under a “Very 
Negative” situation of 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 and a “Very Positive” situation of 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑, it is 
preferred to decrease the transmission power of the studied cell (fuzzy output is 
“Negative”). 

 
Table 5.3: Fuzzy rules of PLUS method (Operator: 𝐴𝐴𝐴; output: 𝛿𝛿𝛿𝛿). 

   Loaddiff 

Userdiff   
Very 

Negative 
Negative Zero Positive Very Positive 

Very 
Negative 

Very Positive Very Positive Positive Zero Zero 

Negative Very Positive Positive Positive Zero Zero 
Zero Very Positive Positive Positive Negative Very Negative 

Positive Zero Zero Negative Negative Very Negative 
Very 

Positive 
Negative Negative 

Very 
Negative 

Very 
Negative 

Very Negative 

 

The same constant output functions 𝜇𝑧(𝛿𝛿𝛿𝛿(𝑐𝑐𝑐𝑐)), as in the previous algorithms, 
are applied here to compare all the algorithms under the same conditions. 

 
Table 5.4: Summary of Fuzzy-based MLB Mechanisms. 

 PTS* PLS PUS PLUS 
Input 1 ∆𝑃𝑃𝑃 ∆𝑃𝑃𝑃 ∆𝑃𝑃𝑃 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 
Input 2 𝐶𝐶𝐶𝑑𝑑𝑑𝑑 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑 
Output 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 𝛿𝛿𝛿𝛿 
* Reference [16] 

 
A summary of the supported inputs and outputs of the MLB mechanisms is 

depicted in Table 5.4. 

 

5.5 Methods for context-aware MLB in femtocell 
networks  

Context information could enhance the mobile network performance as it could 
support mechanisms in real-time, add extra information about the scenario, inform 
about future events, etc. However, current OAM architectures usually manage network 
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parameters in periods of fifteen minutes, hours or even days, or they are not able to 
integrate such as context information. It could be inefficient in dynamic scenarios such 
as indoor environments. In this sense, the local-centralized OAM architecture 
presented in Chapter 3 is a solution for implementing real-time self-management 
mechanisms supported by context information. 

The following subsections initially describe the information sources and 
subsequently, the proposed heuristic context-aware MLB methods are explained. These 
methods aim to mitigate temporal and focused overloaded situations at commercial 
and corporate indoor scenarios due to the high concentration of users in temporal and 
spatial domain, thanks to the knowledge of users’ position. Two context-aware MLB 
methods are proposed. The first method uses the geometrical distances between users, 
their distributions and their PRX to estimate the new femtocells transmission power. 
The second method updates femtocells transmission power based on the average PRX 
stored in a database when users’ position is available, in other case, the average PRX 
values from measurement reports are analyzed. Finally, a simple method of the energy-
saving (ES) use case [45] is proposed in coordination with a MLB mechanism. 

 

5.5.1 System set-up 

The main network parameter that will be tuned is the femtocell transmission 
power. To address this operation, the PRX per terminal is used by the system to 
calculate the new cell transmission power. That information could be obtained or 
estimated from different sources (propagation models, measurement reports, etc.). 
Radio propagation models, as empirical mathematical formulas, characterize radio 
wave propagations. These models are very sensitive to pedestrians, obstacles, etc., 
which vary both in time and space, especially at indoor environments. Other sources 
such as measurement reports provide instantaneous information about PRX, while 
historical PRX values provide an average estimation of PRX. Thus, these PRX values 
could be different depending on the source, the influence of fading and shadowing, etc.  

 

5.5.1.1 PRX from measurement reports  

Mobile devices provide valuable information about the network conditions through 
the Measurement Reports (MR). These reports are periodically sent to the cell and 
contain information about the channel quality (current mobile transmitted/received 
power, block error ratio of the data channel, etc.). This is vital to assist dynamic 
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network planning and RRM processes in power control decisions and handover. 3GPP 
specifications define this type of measurements in [79]. 

The PRX is included in the measurement reports, although named in a different 
way depending on the radio technology. For 2G deployments, it is called RxLev 
(Received Signal Level) whereas, for 3G, it is named as RSCP (Received Signal Code 
Power) and in LTE as RSRP (Reference Signal Received Power). That information is 
periodically forwarded to the OAM layer from the base stations. In practice, as 
aforementioned, the mobile network does not support continuous real-time 
communication to the OAM elements due to the amount of signaling data and the 
high-level location of the OAM in the hierarchy. However, the OAM architecture 
described in Chapter 3 placed some of its functions in lowest levels, making this real-
time process viable. This is in line with distributed SON architectures proposed by 
3GPP for future networks [2]. 

The PRX could be also monitored thanks to context sources such as smartphone 
apps (e.g., G-MoN application [78]). Unfortunately, some reported information could 
be incomplete due to terminal compatibility issues, i.e., measurement capabilities 
would depend on the terminal manufacturer. For example, the PRX from the serving 
cell is always reported but PRX from neighboring cells is missing. Even if the terminal 
is monitoring the PRX from its neighboring cells, the app is not able to report it. As a 
solution, the PRX information per terminal could be requested to a database with 
historical PRX values based on users’ positions.  

 

5.5.1.2 Historical Path Loss Maps (HPLM)  

The PRX depends on several factors such as the propagation channel, the cell 
transmission power, the users’ positions, etc. However, since the signal Path Loss (PL) 
is independent of the cell transmission power, the PL information will be used instead 
of the PRX to create a database. PL values are calculated and stored into this 
database together with the users’ positions, to build the so named Historical Path Loss 
Maps (HPLM). The relationship between PRX and PL is given by: 

 
𝑃𝑃𝑃𝑐𝑐𝑐𝑐(𝑥,𝑦) =  𝑃𝑃𝑃𝑐𝑐𝑐𝑐 − 𝑃𝑃𝑐𝑐𝑐𝑐(𝑥, 𝑦), (5.11) 

 
where 𝑃𝑃𝑃𝑐𝑐𝑐𝑐(𝑥,𝑦) is the received power at (𝑥, 𝑦) position from 𝑐𝑐𝑐𝑐, 𝑃𝑃𝑃𝑐𝑐𝑐𝑐 is the 
Equivalent Isotropically Radiated Power (EIRP) of 𝑐𝑐𝑐𝑐 and 𝑃𝑃𝑐𝑐𝑐𝑐(𝑥, 𝑦) is the radio 
signal path loss at point (𝑥,𝑦) from 𝑐𝑐𝑐𝑐. The database contains the PL per position 
received from each cell. This information is calculated based on the MRs (i.e., PRX 
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values) performed by the terminals over time, the network configuration parameters 
(i.e., cells transmission power) and the users’ positions. Thanks to this HPLM 
database, the system will be able to get an estimation of the PRX per position based 
on equation (5.11).  

Building the HPLM database is a continuous process composed by two sets of 
information (Figure 5.6). On the one hand, the measurements reported from the active 
users are used to calculate the current PL from each cell 𝑃𝑃𝑐𝑐𝑐𝑐(𝑖, 𝑗)𝑢, where 
coordinates (𝑖, 𝑗)𝑢 are the position of user 𝑢. On the other hand, and synchronized with 
the MR, the active user position (𝑖, 𝑗)𝑢 is supplied to the database by an external 
indoor positioning system (as a possible system, Chapter 4 presented an RFID-based 
indoor positioning system) [38]. With this data (measurements and positions) the 
average PL of a position and cell is updated according to the following equation: 

 

𝑃𝑃�𝑐𝑐𝑐𝑐(𝑖, 𝑗) =
1

𝑀(𝑖, 𝑗)
� 𝑃𝑃𝑐𝑐𝑐𝑐(𝑖, 𝑗)𝑚

𝑀(𝑖,𝑗)

𝑚=1

, (5.12) 

 
where 𝑃𝑃𝑐𝑐𝑐𝑐(𝑖, 𝑗)𝑚 are the different path loss measurements over time at position (𝑖, 𝑗) 
and 𝑀(𝑖, 𝑗) is the total number of measurements at position (𝑖, 𝑗) (coming from 
different users). That 𝑃𝑃�𝑐𝑐𝑐𝑐(𝑖, 𝑗) would be used to estimate the 𝑃𝑃𝑃�𝑐𝑐𝑐𝑐(𝑖, 𝑗), according 
to equation (5.11). 

 

   

 (a) Acquisition of information (b) Estimation of PL 

Figure 5.6: HPLM scheme. 

 
The radio channel conditions, especially at indoor environments, suffer continuous 

changes due to the number of people, obstacles, etc. Therefore, the number of samples, 
𝑀(𝑥,𝑦), to build the estimated PL value per position should be a configurable 
parameter and could be quite different depending on the scenario. For this work, the 
number of samples is limited in time to keep the propagation channel conditions 
updated: 
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𝑀(𝑥,𝑦) = 𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃 (𝑥, 𝑦), (5.13) 

 

where 𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑃 (𝑥,𝑦) is the number of samples at (𝑥,𝑦) within last period 𝑃. 

Note that, at the beginning of the process, no historical information is stored in the 
database. Additionally, even when a wide range of data is stored, there could be 
positions with no PL information as �𝑥𝑝,𝑦𝑝� in Figure 5.7. In this case, the mechanism 
needs to guess a possible PL value of that position. To address this problem, PL is 
calculated through an interpolation. A threshold distance of 𝐼𝐼𝐼_𝐷𝑡ℎ (meters) around 
the user’ position is selected as the interpolation area, as shown in Figure 5.7. 

   

   

Figure 5.7: Interpolation at coordinates �𝑥𝑝, 𝑦𝑝�. 

 
The path loss value per cell 𝑃𝑃�𝑐𝑐𝑐𝑐�𝑥𝑝,𝑦𝑝� is estimated as: 

 

𝑃𝑃�𝑐𝑐𝑐𝑐�𝑥𝑝, 𝑦𝑝� ≈�𝑤𝑟 ∙ 𝑃𝑃�𝑐𝑐𝑐𝑐(𝑥𝑟 ,𝑦𝑟)
𝑅

𝑟=1

, (5.14) 

 
where 𝑅 is the number of positions with stored PL information inside the interpolated 
area, 𝑃𝑃�𝑐𝑐𝑐𝑐(𝑥𝑟 ,𝑦𝑟) is the estimated PL value at position 𝑟 that is already stored in the 
database and 𝑤𝑟 is the weight assigned to each 𝑟 position depending on its distance to 
the studied terminal. These weights must be inversely proportional to the distance 
between the known positions and the user’s position in order to give more importance 
to those PL values close to the user’s position. The weights are computed as follows:  
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𝑤𝑟 =
1

𝑑𝑟−𝑝
∙

1

∑  1
𝑑𝑖−𝑝

𝑅
𝑖=1

, (5.15) 

 
where 𝑑𝑎−𝑏 is the distance from position 𝑎 to position 𝑏 and 𝑅 is the number of the 
stored path loss values. The range of 𝑟 would be from 1 to 𝑅 and the sum of 𝑤𝑟 is 1.  

HPLM can also be obtained from Radio Environmental Maps (REM) [106], which is a 
cognitive tool for environmental awareness. It consists in a dynamic procedure to store 
radio environmental information on wireless systems. This idea was defined by the 
Virginia Tech team as a database that contains different kinds of information such as 
environment radio signal, location of base stations, geographical features, etc. 
Furthermore, this tool is not just a simple database storing environmental data, but it 
is also able to process that information to implement spatial interpolation and 
temporal interpolation/processing mechanisms. These procedures could be either static 
or dynamic. For example, some positions of a scenario could be without PRX 
information. Hence, this lack of information is interpolated based on the collected PRX 
samples and the intelligent entity in charge of spatial interpolation. This information 
could be periodically updated through static well-located devices. The results are maps 
based on the processed geo-located data from the mobile networks [107] [108]. 

REM could be either centralized (or global) which provides extensive processing 
capabilities and reduces signaling overhead, or distributed (or local) which increases 
the responsiveness and the computational costs of each cell. Focusing on femtocell 
networks, the most convenient solution would be to centralize all the information in a 
global entity as these indoor environments would be small size networks. Additionally, 
REM could be integrated in the operator’s architecture or be part of a third party 
service provider, which would depend on the operator’s policies and decision. The 
proposed SON system would integrate REM into the middle layers (e.g., domain 
manager) of the operator’s OAM architecture. 

 

5.5.2 Users-distribution-based method 

This method is referred hereafter as UD method. It aims to avoid localized 
congestion issues in indoor femtocell networks. The goal is accomplished by analyzing 
the distribution of the terminals and by tuning the femtocell transmission power.  

UD method analyzes two parameters to consider the femtocell congested. The ratio 
of active users (see equation (5.9), hereafter referred as 𝑙𝑐𝑐𝑐𝑐) over a threshold 𝑆𝑡ℎ and 
the ratio of occupied radio resources (see equation (5.8), hereafter referred as 𝑟𝑐𝑐𝑐𝑐) over 
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a threshold 𝑄𝑡ℎ. The definition of these thresholds is based on the experience of the 
operator or on the sensitivity analysis performed in the studied scenario. Conversely, if 
the femtocell is well-balanced, the transmission power of that femtocell is changed 
±0.5 dB (𝛿𝛿𝛿𝛿 = ±0.5) till it returns to the initial transmission power configuration. 

The procedure of load balancing can be divided in two separate steps: prediction of 
PRX per user and adaptation of femtocells transmission power. 

 

5.5.2.1 Prediction of PRX per user 

This process estimates the PRX that each user from the overloaded femtocell 
would receive next time span ∆𝑇 (seconds) from each cell. Initially, the system verifies 
if the current PRX is received from all cells (serving cell and neighboring cells) in real-
time (𝑡). In case any piece of this information is missing, last stored PRX value is 
requested to the HPLM database as a function of the users’ position. At the same 
time, the system demands previous values of PRX in the interval of 𝑇 times ∆𝑇 
received from each cell in order to build the PRX vector per cell and user, i.e., 
{𝑃𝑃𝑃(𝑡),𝑃𝑃𝑃(𝑡 − ∆𝑇), … ,𝑃𝑃𝑃(𝑡 − 𝑇 ∙ ∆𝑇)}. In the same way as before, if those PRX 
values are not reported by the terminal or they are available in the system, they are 
requested to the HPLM database. Finally, the system estimates the values of 
𝑃𝑃𝑃(𝑡 + ∆𝑇) per femtocell based on the PRX vectors. It is calculated following a 
simple and low computational cost approach: a first order polynomial trend line. This 
procedure is repeated for each user of overloaded femtocells in the cellular network. 
Figure 5.8 shows the flowchart of this process for user i from femtocell j in the interval 
[𝑡, 𝑡 − 𝑇 ∙ ∆𝑇] by steps of ∆𝑇. 

 

   

Figure 5.8: Estimation of 𝑃𝑃𝑃(𝑡 + ∆𝑇) for user i and femtocell j. 
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5.5.2.2 Adaptation of femtocells transmission power 

The femtocell transmission power adaptation (𝛿𝛿𝛿𝛿) is calculated individually per 
overloaded femtocell to offload that cell by decreasing the femtocell transmission power 
(minimum femtocell transmission power is 𝜏𝑚𝑚𝑚) based on 𝑃𝑃𝑃(𝑡 + ∆𝑇) values. 𝛿𝛿𝛿𝛿 
would depend on the users’ distributions. Hence, it should be analyzed whether a 
concentration (or group of users) exists or not, and what type it is. 

Several terminals are considered as a group when the distance between all of them 
is under the average distance of all the users in the service area. In this sense, three 
kinds of groups are defined as shown in Figure 5.9. The type of group depends on 
three factors: the distance between users, the group location inside the coverage area 
and the size (in terms of number of users) of the group. In case the group is composed 
of all users in the serving cell (Figure 5.9(a)) it is named as no group. If the group 
encloses the femtocell (Figure 5.9(b)), it is called central group. Otherwise, the group 
does not enclose the femtocell, it is named border group (Figure 5.9(c)). In case there 
is more than one group, the one with the highest number of users is selected as target 
group, prioritizing border groups over central groups. 

 

           
 (a) No group  (b) Central group  (c) Border group  

Figure 5.9: Type of users’ distribution. 

 
Depending on the target group, a different method is proposed: 

• No group: For each user 𝑖 of the studied cell (overloaded femtocell), the 
difference between the estimated value of PRX of that cell and the estimated 
PRX value of the strongest neighboring cell is defined as the neighboring cell 
interval, 𝑁𝑁𝑁 (dB).  

 

𝑁𝑁𝑁𝑖 = 𝑃𝑃𝑋𝑐𝑐𝑐𝑐(1)(𝑡 + ∆𝑇) −𝑚𝑚𝑚�𝑃𝑃𝑃𝑐𝑐𝑐𝑐(𝑗)(𝑡 + ∆𝑇)� �𝑗 ≠ 1
, (5.16) 

 
where 𝑐𝑐𝑐𝑐(1) refers to the studied femtocell. Note that neighboring cells include 
any kind of cell (macrocell, picocell, etc.). 
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After that, the median of all the calculated 𝑁𝑁𝑁 is computed as 𝑀𝑐𝑐𝑐𝑐. As an 
example, Figure 5.9(a) illustrates the 𝑁𝑁𝑁 of each terminal where 𝑀𝑐𝑐𝑐𝑐 =
14.5 𝑑𝑑. Those users with lower 𝑁𝑁𝑁 than 𝑀𝑐𝑐𝑐𝑐 (blue with dotted lines in the 
example of Figure 5.9(a)) are supposed to handover to neighboring cells.  

• Central group: This situation follows the same procedure as before. However, 
in this case, the analyzed terminals are only those which are not labelled as 
users of the target group (dark blue circles in Figure 5.9(b)). 

• Border group: The situation is different because of the lower number of 
possible target cells. In addition, the probability of overloading a neighboring 
cell is high. Therefore, the femtocell adaptation should be slower. In 
consequence, the estimation of the 𝑁𝑁𝑁 is calculated only for the users of this 
group (green dotted icon in Figure 5.9(c)). In the same way, the median 𝑀𝑐𝑐𝑐𝑐 of 
these values is calculated following the previous procedure.  

The 𝑀𝑐𝑐𝑐𝑐 is added to the defined offset of the serving cell to accomplish the 
handover and avoid ping-pong issues. Then, the transmission power adaptation of the 
studied cell is 𝛿𝛿𝛿𝛿 = 𝑀𝑐𝑐𝑐𝑐 + 𝑜𝑜𝑜𝑜𝑜𝑜. This power reduction can be done without 
creating coverage holes due to the common overlapping conditions of femtocell 
environments. In turn, as previously mentioned, those cells without congestion issues 
change their transmission ±0.5 dB, to return to the initial power configuration.  

Once the studied cell reduces its transmission power, those candidate users that 
should offload the cell, hand over to the neighboring cells. Those users in the border of 
a femtocell-macrocell could easily hand over to the macrocell in case the femtocell is 
overloaded. Conversely, no macrocell-parameters adaptation is desirable because it 
would affect large areas and huge number of users outside the indoor scenario. 

 

5.5.3 Virtual-maps-based method 

The previous context-aware method (UD method) made use of the distribution of 
the terminals and their geometrical distances to estimate the new transmission power 
of the femtocells. This analysis could not be always the best way to focus the MLB 
optimization efforts in indoor scenarios due to the influence of the wall, obstacles, etc. 
For example, two close users of the same group could receive quite different PRX if 
there is a wall in the middle. Hence, UD method would properly work in open spaces 
like halls. In this subsection, new context-aware mechanisms are proposed for any kind 
of indoor scenario. In addition, it would prioritize voice traffic over data traffic users. 
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A new MLB mechanism is designed but two configurations are supported. The first 
location-aware approach (hereafter named Virtual-Maps, VM, method) analyzes the 
average estimation of the PRX and requires the users’ positions to create historical 
PRX databases (see subsection 5.5.1.2 “Historical Path Loss Maps (HPLM)”) and 
afterwards to process it. Conversely, the second approach is named MR method and 
PRX values from MRs are required (see subsection 5.5.1.1 “PRX from measurement 
reports”). MR method is not a location-aware approach but it is described in parallel 
to the location-aware VM method because they share the same procedures but 
different information sources. 

 

5.5.3.1 Internal procedures 

Internal procedures would be in charge of creating virtual maps (VMs) based on 
the information provided by the HPLM. These maps support the VM method. 

 

5.5.3.1.1 Serving cell maps 

A method is proposed to estimate coverage maps where some cellular irregularities 
such as overshooting cell issues are eliminated and the most suitable serving cell for 
each position is represented. Figure 5.10(a) shows the classical coverage for femtocells 
(omnidirectional antennas) where an indoor network issue is illustrated: overshooting. 
It might happen due to the geometry of these environments, multi-path reflections, 
wall obstacles, number of people, etc. Therefore, a femtocell (red femtocell “r” in top 
left of Figure 5.10(a)) could serve users out of its expected coverage area due to 
propagation channel conditions. These occasional small coverage areas could be a 
shortcoming for many SON algorithms. That situation also presents problems to 
operators in terms of signaling cost because the number of handovers around the 
overshooting area will be increased. 

 

       

(a) Classical coverage areas (overshooting) (b) Proposed cell areas (SCM)  

Figure 5.10: Calculation of SCM. 
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Those situations would be managed thanks to the so-called Serving Cell Maps 
(SCM). Calculating SCM is a process composed of two steps. In the first step, the new 
coverage areas are defined based on geo-located PRX matrices supported by the 
HPLM database. This procedure is based on Thiessen Polygons [109] where, for each 
cell, an irregular polygon 𝐴𝑐𝑐𝑐𝑐(𝑘) that delimitates its serving cell area is generated: 

 
𝐴𝑐𝑐𝑐𝑐(𝑘) = {(𝑥,𝑦) ∈ (𝑋,𝑌)| 𝑃𝑃𝑃(𝑥,𝑦)𝑐𝑐𝑐𝑐(𝑘) > 𝑃𝑃𝑃(𝑥, 𝑦)𝑐𝑐𝑐𝑐(𝑗) ∀ 𝑗 ≠ 𝑘, (5.17) 

 
where (𝑋,𝑌) are the coordinates of the scenario. This process builds a network map as 
that presented in Figure 5.10(a), where for a certain femtocell (r) two disconnected 
coverage areas are presented. Therefore, the next step is to determine which the main 
area is. For that purpose, those areas 𝐴𝑐𝑐𝑐𝑐(𝑘) that are split into 𝑆 subareas, 𝐴𝑐𝑐𝑐𝑐(𝑘)

𝑖 , 
must be analyzed. Those subareas are compared to find the biggest one in order to 
remove overshooting and keep the most suitable area:  

 

𝐴′𝑐𝑐𝑐𝑐(𝑘) = 𝑚𝑚𝑚�𝐴𝑐𝑐𝑐𝑐(𝑘)
𝑖 � 𝐴𝑐𝑐𝑐𝑐(𝑘) = �𝐴𝑐𝑐𝑐𝑐(𝑘)

𝑖
𝑆

𝑗=1

}. (5.18) 

 

In this sense, those removed areas must be joined to other/s area/s. Therefore, each 
area 𝐴𝑐𝑐𝑐𝑐(𝑝)�𝑝 ≠ 𝑘 must be updated by including those discarded areas 
𝐴𝑐𝑐𝑐𝑐(𝑘)
𝑖 �𝐴𝑐𝑐𝑐𝑐(𝑘)

𝑖 ≠ 𝐴𝑐𝑐𝑐𝑐(𝑘)
′   according to: 

 

𝐴′𝑐𝑐𝑐𝑐(𝑝) = 𝐴𝑐𝑐𝑐𝑐(𝑝) + �𝐴𝑐𝑐𝑐𝑐(𝑝)
ℎ

𝐻

ℎ=1

, (5.19) 

 
where 𝐻 is the number of new coverage subareas belong to 𝑐𝑐𝑐𝑐(𝑝) and 𝐴𝑐𝑐𝑐𝑐(𝑝)

ℎ  is 
calculated as equation (5.20) but focusing on those discarded areas and avoiding the 
PRX information of 𝑐𝑐𝑐𝑐(𝑘):  

 
𝐴𝑐𝑐𝑐𝑐(𝑝)
ℎ = �(𝑥, 𝑦) ∈ �𝑋𝑐𝑐𝑐𝑐(𝑘)

𝑖 ,𝑌𝑐𝑐𝑐𝑐(𝑘)
𝑖 �� 

 𝑃𝑃𝑃(𝑥, 𝑦)𝑐𝑐𝑐𝑐(𝑝) > 𝑃𝑃𝑃(𝑥,𝑦)𝑐𝑐𝑐𝑐(𝑞) ∀ 𝑞 ≠ 𝑝,𝑘}. 
(5.20) 

 
This process is repeated till all subareas are joined to a main cell. Finally, the 

proposed serving cells coverage areas are illustrated on Figure 5.10(b), where the small 
subarea of the red cell (r) is embedded into the yellow cell (y) area. 



 
Indoor mobility load balancing techniques 111 

5.5.3.1.2 Neighbor cell maps 

A new virtual map, named Neighbor Cell Maps (NCM), is designed to estimate the 
neighboring cells of each serving cell. The aim of these maps is to create the proposed 
neighbor cell lists.  

 

    

 (a) Proposed SCM (b) Proposed NCM  

Figure 5.11: Calculation of proposed neighbor cell list. 

 
For that purpose, the same procedure to build SCM is followed now but, removing 

the PRX values of the serving cell 𝑐𝑐𝑐𝑐(𝑘). Then, equations (5.17) to (5.20) generate 
the new NCM (see Figure 5.11(b)). Those new areas which cover the original area 
𝐴′𝑐𝑐𝑐𝑐(𝑘) (from SCM) are denoted as 𝐴𝑐𝑐𝑐𝑐(𝑗→𝑘), where 𝑐𝑐𝑐𝑐(𝑗 → 𝑘) means that the cell 
𝑐𝑐𝑐𝑐(𝑗) covers the area of the serving cell 𝑐𝑐𝑐𝑐(𝑘). Figure 5.11(b) depicts an example 
where three cells (𝑗 = {𝑏, 𝑦,𝑔}) are adjacent to the serving cell (𝑘 = {𝑟}). Finally, the 
proposed neighbor cell list is created as follows: 

 
𝐶𝑐𝑐𝑐𝑐(𝑘) = {𝑐𝑐𝑐𝑐(𝑗) | 𝐴𝑐𝑐𝑐𝑐(𝑗→𝑘) ∈ 𝐴′𝑐𝑐𝑐𝑐(𝑘)∀ 𝑗 ≠ 𝑘}. (5.21) 

 

5.5.3.2 System implementation 

The proposed context-aware MLB system (based on VM or MR methods) ensures a 
consistent solution to those operators aiming at prioritizing voice traffic users over 
data traffic users in indoor femtocell environments, as the impact to the end user is 
more frustrating in voice calls than in data traffic. For that purpose, the system 
provides free resources for voice traffic when the indoor network is temporary 
congested, whereas data traffic is handed over to macrocells or suffers outage for a 
while (that would be managed by the AC or the Schedulers). Additionally, the ratio of 
occupied radio resources is considered negligible in comparison with the ratio of active 
users in LTE networks due to the high-peak data rates supported and the very low 
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number of active users. For this reason, cell load is only analyzed based on the ratio of 
active user (see equation (5.10)). 

The global scheme of the proposed heuristic rule-based mechanism is depicted in 
Figure 5.12. It shows an iterative mechanism to estimate the new transmission power 
variations of the femtocells, 𝛿𝑃𝑃𝑃𝑐𝑐𝑐𝑐. The system iterates while it evaluates that any 
femtocell could be overloaded with the calculated new transmission power variation. 
That new network configuration would be estimated based on the VMs. Once the 
system achieves a balance situation, those new transmission power variations are set in 
femtocells. The system inputs are the cellular network KPIs, the PRX and the position 
of the terminals. The system output is a vector, 𝛿𝑃𝑃𝑃����������⃗ , with the transmission power 
variation that should be applied to each femtocell. Additionally, another vector, 𝐹⃗, 
indicates the activity of the femtocells (whether a femtocell has active users or not). 

 

  

Figure 5.12: Context-aware MLB scheme. 

 
Note that, when users’ positions are not available or the indoor positioning system 

statistical parameters are unsuitable for improving the performance of the system due 
to high position error, PRX and cell data are directly read from the MRs and KPIs.  

Additionally, two thresholds are defined to consider a serving cell is overloaded and 
its neighboring cells are low-loaded:  

• 𝑆𝑡ℎ is the minimum ratio of users (see equation (5.10)) to consider a serving cell 
as highly loaded. Its range goes from 0 (cell is considered highly loaded) to 1 
(cell is considered highly loaded). 

• 𝑇𝑡ℎ is the maximum average ratio of users in the neighboring cells of the studied 
cell to consider the neighboring cells as low loaded and, consequently, available 
to catch users to offload the studied cell. Its range goes from 0 to 1.  

These thresholds are configured based on a sensitivity study or on the operators’ 
experience, policies or priorities. The initial condition 𝑆𝑡ℎ > 𝑇𝑡ℎ should be mandatory 
to avoid possible ping-pong effects and oscillations in the MLB process. 
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The main modules of the MLB method are described in the next subsections 
according to Figure 5.12. As an iterative system, once the new femtocells transmission 
powers are estimated, this procedure analyzes the network again based on these 
estimations to detect possible overloaded femtocells with the new configuration. 

 

5.5.3.2.1 Estimation of users to HO 

The aim of this module is to provide an estimation of the number of users that 
should leave the selected overloaded cell, 𝑢𝑐𝑐𝑐𝑐, to hand over towards a target cell. The 
scheme of this module is depicted in Figure 5.13. Firstly, the system examines the 
ratio of users per femtocell 𝑘 (see equation (5.10), hereafter referred as 𝑙𝑐𝑐𝑐𝑐(𝑘)), where 
𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 could be either 1) the number of active users in the femtocell (for the 
MR method) or 2) the number of users in the coverage area of the femtocell based on 
the SCM when users’ positions are available (for the VM method).  

 

 

Figure 5.13: Scheme of estimation of users to HO. 

 
All 𝑙𝑐𝑐𝑐𝑐(𝑘) are ranked to get the maximum ratio, 𝐿𝑐𝑐𝑐𝑐, and the highest overloaded 

cell. Hereafter that cell will be called studied cell. The procedure could return to this 
point to select the next ranked cell when the studied cell could not be offloaded in this 
iteration (see next subsection). 

The condition 𝐿𝑐𝑐𝑐𝑐 >  𝑆𝑡ℎ makes the algorithm continue, in other case, this module 
finishes with 𝑢𝑐𝑐𝑐𝑐 = 0 (no users should leave the studied cell in this iteration). In case 
the condition is accomplished, users are classified per service. 

Due to the interest of satisfying voice call users, a basic classification of traffic into 
two main services is taken into account: voice connections and other services. In case 
there are users with other services (data traffic), these users are forced to handover to 
macrocells one by one after evaluating the initial condition again, 𝐿𝑐𝑐𝑐𝑐 > 𝑆𝑡ℎ. Note 
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that, in most cases, there is no macrocell coverage indoors. Hence, most of these data 
traffic users could be in outage for a while till a femtocell is available. 

Since normally there is a high overlapping between femtocells because of their 
unplanned deployments, the studied cell would usually include a lot of cells in the 
neighbor cell lists. However, when users’ positions are available, these lists would be 
changed by the proposed neighbor cell lists of the studied cell, 𝐶𝑐𝑐𝑐𝑐, based on NCM, 
described in “5.5.3.1.2 Neighbor cell maps”. It would reduce overshooting issues. 

Now, it is time to determine whether the neighboring cells have space to allocate 
new users or not. In this sense, the average of the ratio of users in the neighboring cells 
is calculated (same as the summation term of equation (5.9)):  

 

𝐿𝑛𝑛 =
1

𝑁𝑁𝑐𝑐𝑐𝑐
∙� 𝑙𝑐𝑐𝑐𝑐(𝑖)

𝑁𝑁𝑐𝑐𝑐𝑐

𝑖=1
, (5.22) 

 
where 𝑙𝑐𝑐𝑐𝑐(𝑖) is calculated according to equation (5.10), 𝑖 refers to the identification of 
the neighboring cells and 𝑁𝑁𝑐𝑐𝑐𝑐is the length of that list.  

After that, the situation could be: 

• 𝐿𝑛𝑛 ≥ 𝐿𝑐𝑐𝑐𝑐, which means that the studied cell has less camped users than the 
average camped users of its neighboring cells. Therefore, no users should leave 
that cell because the situation out of this cell is the same or worst.  

• 𝐿𝑛𝑛 < 𝐿𝑐𝑐𝑐𝑐, which means that the situation of the studied cell could be critical 
but it could be solved as, in average, its neighboring cells present lower number 
of camped users. In consequence, some users of the studied cell will hand over to 
the most suitable neighboring cells. 

To ensure good QoE, avoid ping-pong effects and continue with the offloading of 
the studied cell, the condition 𝑇𝑡ℎ > 𝐿𝑛𝑛   should be accomplished. Otherwise, there are 
no close offloaded cells to share and move users towards. This situation could be 
solved by offloading those neighboring cells in the following iterations. Hence, the 
system would return to the first module and select the next ranked 𝑐𝑐𝑐𝑐 in terms of the 
ratio of active users (𝑙𝑐𝑐𝑐𝑐). That new 𝑐𝑐𝑐𝑐 would be the new studied cell. Note that, if 
the system is not able to solve this unlikely situation, an event would be trigger to 
warn the network engineers about this problematic situation. Engineers will study this 
case and evaluate the planning of the deployment of additional femtocells (if this case 
is repeated several times in the same place) or doing nothing because it is an isolate 
case or because 𝑆𝑡ℎ and 𝑇𝑡ℎ should be reconfigured (bad configuration or very restricted 
thresholds).  
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Finally, the number of users, 𝑢𝑐𝑐𝑐𝑐, that should leave the studied cell are calculated: 

 

𝑢𝑐𝑐𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐{max _𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 ∙ �
𝐿𝑐𝑐𝑐𝑐  +  ∑ 𝑙𝑐𝑐𝑐𝑐(𝑖)𝑁𝑁

𝑖=1

𝑁𝑁𝑐𝑐𝑐𝑐 + 1
�}, (5.23) 

 
where 𝑐𝑐𝑐𝑐 function gets the nearest integer towards infinity, 𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 could be 
either 1) the number of active users in the femtocell (for the MR method) or 2) the 
number of users in the coverage area of the femtocell based on the SCM when users’ 
positions are available (for the VM method), 𝑚𝑚𝑚_𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐 is the total number of 
users that the femtocell could allocate, 𝐿𝑐𝑐𝑐𝑐 is the ratio of users per cell and 𝑁𝑁𝑐𝑐𝑐𝑐 is 
the number of neighboring cells. 

 

5.5.3.2.2 Calculation of 𝜹𝜹𝜹𝜹�����������⃗  

This module decides the transmission power variation that must be applied to each 
femtocell to move users and to avoid overloaded cells in the network. The scheme is 
illustrated in Figure 5.14.  

  

   

Figure 5.14: Scheme of calculation of 𝛿𝛿𝛿𝛿����������⃗  block. 

 

Once the candidate cell to be offloaded has been selected and the number of users 
that should leave the cell calculated, it is necessary to determine the PRX of users in 
that cell. The system proposes two ways to obtain the PRX depending on whether the 
users are located or not: 

• PRX from HPLM: users’ positons are required to estimate the value of its 
PRX. In this case, equation (5.11) estimates those values of PRX for each user’ 
position and femtocell, based on the stored information of HPLM and equations 
(5.12) and (5.14). 
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• PRX from MR: the PRX is directly acquired from the mobile reports. It 
provides actual data about the propagation channel. 

When there is no information about the PRX from a given neighboring cell, the 
PRX for such cell is set to -130 dBm. 

This process starts with the initialization of 𝛿𝑃𝑃𝑃����������⃗  to zero or, in case the system 
had already iterated, with its previous value. Then, the calculation of ∆ is performed. 
These parameters are calculated by elementary equations: additions, and operators: 
maximum and minimum. It would reduce the computational complexity and costs. 

For each user 𝑔(𝑚) (where 𝑚 = {1,2, …𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐}) of the studied cell, the 
PRX value from its serving cell, 𝑃𝑃𝑃𝑐𝑐𝑐𝑐

𝑔(𝑚), and the maximum PRX value from its 
neighboring cells, 𝑅𝑅𝑅𝑅𝑛𝑛(𝑚)

𝑔(𝑚) , are defined. Being 𝑛𝑛(𝑚) the neighboring cells with the 
highest value of PRX for the studied user 𝑚. Remind that this process could be done, 
either with information from MRs or, based on the VMs (SCM and NCM). 

The following two vectors composed of those values are created: 

 

𝑃𝑃𝑃𝑐𝑐𝑐𝑐���������������⃗ = �𝑃𝑃𝑃𝑐𝑐𝑐𝑐
𝑔(1),𝑃𝑃𝑃𝑐𝑐𝑐𝑐

𝑔(2) …𝑃𝑃𝑃𝑐𝑐𝑐𝑐
𝑔�𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐��, (5.24) 

 

𝑃𝑃𝑃𝑛𝑛�������������⃗ = �𝑃𝑃𝑃𝑛𝑛(1)
𝑔(1) ,𝑃𝑃𝑃𝑛𝑛(2)

𝑔(2) …𝑃𝑃𝑃𝑛𝑛(𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢)
𝑔�𝑎𝑎𝑎𝑎𝑎𝑎_𝑢𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐��. (5.25) 

 
After that, the minimum value of the difference between these two vectors is saved: 

 
∆𝑡𝑡𝑡𝑡𝑡𝑡= min�𝑃𝑃𝑃𝑐𝑐𝑐𝑐���������������⃗ − 𝑃𝑃𝑃𝑛𝑛�������������⃗ �, (5.26) 

 
where 𝑡𝑡𝑡𝑡𝑡𝑡 refers to the neighboring cell that minimizes previous equation. That 
neighboring cell 𝑛𝑛(𝑚) which makes ∆𝑡𝑡𝑡𝑡𝑡𝑡 minimum, is selected (𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑛𝑛(𝑚), 
possible target cell for that user). In case that ∆𝑡𝑡𝑡𝑡𝑡𝑡 is positive, the transmission 
power variation 𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  applied to that target cell is calculated as follows in 
equation (5.27), where 𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  is equal to ∆𝑡𝑡𝑡𝑡𝑡𝑡

2
 the first iteration because initial 

values of 𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  are set to zero. Otherwise, ∆𝑡𝑡𝑡𝑡𝑡𝑡 is negative, this step is skipped 
and the transmission power variation 𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  is not estimated.  

 

𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑚𝑚𝑚 �𝛿𝑃𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡 ,
∆𝑡𝑡𝑡𝑡𝑡𝑡

2
�. (5.27) 
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That user is removed from vectors 𝑃𝑃𝑃𝑐𝑐𝑐𝑐���������������⃗  and 𝑃𝑃𝑃𝑛𝑛�������������⃗  and 𝑢𝑐𝑐𝑐𝑐 decreases one unit. 
The loop is repeated till 𝑢𝑐𝑐𝑐𝑐 reaches the zero value, then, the studied cell transmission 
power variation 𝛿𝑃𝑃𝑃𝑐𝑐𝑐𝑐 is calculated:  

 
𝛿𝑃𝑃𝑃𝑐𝑐𝑐𝑐 = −�𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑚𝑚𝑚�𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 �����������������������⃗ ��, (5.28) 

 
where 𝑜𝑜𝑜𝑜𝑜𝑜 is the parameter involved in the handover process (e.g., event A3 in 
LTE [79]) defined to reduce ping-pong handovers, etc. and 𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 �����������������������⃗  is the vector 
composed of all the target neighboring cells transmission power variations. Note that 
the decrease in the studied cell transmission power is truncated by 𝜏𝑚𝑚𝑚, as well as the 
neighboring cells transmission power has an upper limit of 𝜏𝑚𝑚𝑚. This condition is 
required to guarantee the QoS and to accomplish the maximum transmission power of 
the cells, respectively. Finally, the output of this module is the vector: 

 
𝛿𝑃𝑃𝑃����������⃗ = �𝛿𝑃𝑃𝑃𝑐𝑐𝑐𝑐 , 𝛿𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡 �����������������������⃗ �. (5.29) 

 
The system emulates how the new network configuration, 𝛿𝑃𝑃𝑃����������⃗ , impacts on the 

deployed cells and determine whether it would be well-balanced or another cell needs 
to be analyzed because there are still overload issues (𝐿𝑐𝑐𝑐𝑐 >  𝑆𝑡ℎ). 

In order to do that, new values of PRX must be estimated per user (𝑃𝑃𝑃′). To 
determine those values of 𝑃𝑃𝑃′, the variable 𝑃𝑃𝑃𝑐𝑐𝑐𝑐 of equation (5.11) is replaced by 
𝑃𝑃𝑃𝑐𝑐𝑐𝑐 + 𝛿𝑃𝑃𝑃𝑐𝑐𝑐𝑐, i.e., the new EIRP that should be configured in that cell. According 
to 𝑃𝑃𝑃′ values and going back to the first block “5.5.3.2.1 Estimation of users to 
HO”, the new number of active users per 𝑐𝑐𝑐𝑐𝑖 is estimated based on the number of 
users that accomplish: {𝑃𝑃𝑃′𝑐𝑐𝑐𝑐𝑖 > 𝑃𝑃𝑃′𝑐𝑐𝑐𝑐𝑗  ∀ 𝑖 ≠ 𝑗}. With the availability of users’ 
positions, new SCM and NCM are built to estimates the serving areas and the 
proposed neighboring cell list.  

 

5.5.3.2.3 Cell activity 

Once the system has determined the network would be well-balanced (𝐿𝑐𝑐𝑐𝑐 <  𝑆𝑡ℎ), 
the last block provides the configuration as an output file. It contains information 
about cells transmission power variation, 𝛿𝑃𝑃𝑃����������⃗ , and the activity of the cells, 
𝐹⃗ = {𝑓𝑐𝑐𝑐𝑐(1),  𝑓𝑐𝑐𝑐𝑐(2), … 𝑓𝑐𝑐𝑐𝑐(𝑘)}. The latter indicates when a cell has camped users:  

 

𝑓𝑐𝑐𝑐𝑐 = �1 𝑐𝑐𝑐𝑐 ℎ𝑎𝑎 𝑐𝑐𝑚𝑚𝑚𝑚 𝑢𝑢𝑢𝑢𝑢
0 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

. (5.30) 
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5.5.3.3 Load balancing and energy savings coordination 

As MLB mechanisms are femtocell transmission power related, the modification of 
this parameter might be highly susceptible to logical or parametric dependencies with 
other SON algorithms. As a consequence, many conflicts could arise (e.g., tuning the 
same network parameter) during mobile network operation due to these dependencies, 
undermining the stability of the network performance. The coordination of SON 
algorithms is an important challenge that must be addressed to ensure the highest 
network performance [110].  

Those cells with no close users could turn off its radio propagation activity and 
standby their internal procedures by keeping the cell in dormant mode or switched off. 
As a consequence, a substantial reduction of mobile network energy consumption could 
be reached. This use case is referred as Energy-Savings (ES) [45]. Since it is power 
related, the coordination between this mechanism and other power related SON 
methods is mandatory to avoid potential conflicts in the network parameters 
adaptation, ensuring the system robustness and reliability [110]. 

Based on this, a location-based ES algorithm and its coordination with proposed 
MLB mechanisms are developed to ensure users’ accessibility and retainability, at the 
same time reducing the overall power consumption. These mechanisms analyze the 
network indicators and the information about the positions of the terminals (see the 
scheme in Figure 5.15). 

 

  

Figure 5.15: Coordinated location-based self-optimization scheme. 

 
This mechanism switches on/off or turns into dormant mode the femtocells 

depending on the users’ position, the network KPIs and the information provided by 
the MLB mechanism. In dormant mode, the femtocell is recovered in few seconds, 
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whereas it takes tens of seconds when it is switched off. This algorithm will be 
triggered once the MLB algorithm had finished. 

 

5.5.3.3.1 System implementation 

The ES system is illustrated in Figure 5.16, which is mainly composed of two 
modules. The first module computes the reference distance based on the SCM. The 
second module introduces a FLC to evaluate the status of each femtocell: 

• Reference distance: This module calculates an indicator named reference 
distance for each user and cell, which is proportional to the distance from the 
users’ position to the studied cell. 
 

 

Figure 5.16: Energy-savings scheme. 

 
For that purpose, a process similar to that defined for NCM (see Figure 5.11) is 
applied in this method for each studied cell. In this case, instead of removing 
the studied cell, the femtocells of its proposed neighbor cell list (see equation 
(5.21)) are removed from the network. In consequence, a new layer is created 
with three different areas: 1) the original studied cell coverage area is defined as 
“blue area”, 2) the new extended coverage area of that cell is the “green area” 
and 3) the rest of the scenario is denoted as “red area” (see Figure 5.17). 
After that, a vector 𝐸𝑐𝑐𝑐𝑐��������⃗  is obtained with the reference distances of all users in 
the scenario for each studied cell. It is built as: 
 

𝐸𝑐𝑐𝑐𝑐��������⃗ = �𝑒𝑐𝑐𝑐𝑐(𝑔1), 𝑒𝑐𝑐𝑐𝑐(𝑔2) … 𝑒𝑐𝑐𝑐𝑐(𝑔𝑛)�, (5.31) 
 
where 𝑔𝑥 identifies the user, 𝑛 is the total number of active users in the scenario 
and 𝑒𝑐𝑐𝑐𝑐(𝑔𝑥) is described as follows: 
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𝑒𝑐𝑐𝑐𝑐(𝑔) =

=

⎩
⎪
⎨

⎪
⎧ 0.5 ∙

𝑑𝑐𝑐𝑐𝑐−𝑢𝑢𝑢𝑢
𝑑𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏_𝑒𝑒𝑒𝑒

𝑖𝑖 𝑔 ∈ 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐

0.5 ∙ (1 +
𝑑𝑐𝑐𝑐𝑐−𝑢𝑢𝑢𝑢 −  𝑑𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏_𝑒𝑒𝑒𝑒

𝑑𝑐𝑐𝑐𝑐−𝑔𝑔𝑔𝑔𝑔_𝑒𝑒𝑒𝑒 −  𝑑𝑐𝑐𝑐𝑐−𝑏𝑏𝑏𝑏_𝑒𝑒𝑒𝑒
) 𝑖𝑖 𝑔 ∈ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎

1 𝑖𝑖 𝑔 ∈ 𝑟𝑟𝑟𝑟 𝑜𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

, (5.32) 

 
where 𝑑𝑎−𝑏 is the distance from position 𝑎 to position 𝑏. In consequence, the 
subindex 𝑐𝑐𝑐𝑐 identifies the position of the studied cell and 𝑢𝑢𝑢𝑢 refers to the 
position of each terminal. The subindexes 𝑏𝑏𝑏𝑏_𝑒𝑒𝑒𝑒 and 𝑔𝑔𝑔𝑔𝑔_𝑒𝑒𝑒𝑒 are 
calculated as the intersection between the line (𝑐𝑐𝑐𝑐 − 𝑢𝑢𝑢𝑢) and the area edge. 
Finally, the minimum reference distance, 𝜀𝑐𝑐𝑐𝑐 = min { 𝐸𝑐𝑐𝑐𝑐��������⃗ }, is selected. 

 

 

Figure 5.17: Reference distance scheme. 

 
• Fuzzy logic controller (FLC): This module decides whether the femtocell 

should be switched on/off or kept in dormant mode. For that purpose, a FLC 
has been selected to evaluate the reference distance information, 𝜀𝑐𝑐𝑐𝑐. The main 
reason to select a FLC is its simplicity in implementing and managing rules 
based on the recommendations of expert as well as its low computational cost to 
be implemented in a real network. Appendix C details the FLC approach based 
on the Takagi-Sugeno-Kang (TSK) [111] approach. The FLC is defined 
according to the requirements of the energy efficiency mechanism. The input 
parameters to the FLC are: the Reference Distance (RD), which comprises the 
𝜀𝑐𝑐𝑐𝑐 value for each studied cell; and the Cell Status (CST), which presents the 
current status of the studied cell (on, off or dormant mode). The Proposed Cell 
Status (PCS) is the output of the system, whose possible values are: 'ON' (value 
= 1), 'Dormant Mode' (value = 0) and 'OFF' (value = -1) (see Figure 5.18c). A 
membership function is defined for each input. RD possible values are: 'Very 
Close' (VC), 'Close' (C), 'Far' (F) and 'Very Far' (VF). Likewise, CST possible 
values are: 'ON' (ON), 'Dormant Mode' (DM) and 'OFF' (OFF). These 
membership functions are shown on Figure 5.18(a) and Figure 5.18(b). 
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(a) Input 1 

 

(b) Input 2 

 

(c) Output 

Figure 5.18: Membership functions. 

 
The fuzzy rules are described in Table 5.5, which are based on the AND 
operator. This means, all the conditions of the expression must be true. For a 
better understanding, an example rule is described: 'IF RD is 'close' AND CST 
is 'dormant mode' THEN PCS is 'ON'.  
The two membership functions are computed to get the degree of truth of each 
rule 𝑖: 
 

𝛼𝑖 = 𝜇𝑥(𝑅𝑅) ∗ 𝜇𝑦(𝐶𝐶𝐶), (5.33) 
 



 
122  Indoor mobility load balancing techniques 

where ∗ is the AND operation included in the antecedent of the rules. Finally, 
the FLC presents the output value, 𝑜𝑐𝑐𝑐𝑐, based on the center-of-gravity method: 
 

𝑜𝑐𝑐𝑐𝑐 =
∑ 𝛼𝑖 ×  𝜔𝑖
𝐵
𝑖=1
∑ 𝛼𝑖𝑅
𝑖=1

, (5.34) 

 
where 𝛼𝑖 is the degree of truth for rule 𝑖 (equation (5.33)), 𝜔𝑖 is the value of the 
constant output (1, 0 or –1) of rule 𝑖 and 𝐵 is the number of defined rules. 
The last step of the ES algorithm is to integrate the output value of the FLC 
(𝑜𝑐𝑐𝑙𝑙) with the Cell Activity (𝑆𝑐𝑐𝑐𝑐) provided by the MLB mechanism, as the 
latter is more critical. 
 

𝜑𝑐𝑐𝑐𝑐 = �
−1 𝑖𝑖 𝑆𝑐𝑐𝑐𝑐 = 0 𝑎𝑎𝑎 𝑜𝑐𝑐𝑐𝑐 ∈ (−1,−0.5)
0 𝑖𝑖 𝑆𝑐𝑐𝑐𝑐 = 0 𝑎𝑎𝑎 𝑜𝑐𝑐𝑐𝑐 ∈ [−0.5, 0.5]
1 𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒

, (5.35) 

 
where 𝜑𝑐𝑐𝑐𝑐 could take the same three values as PCS: –1, this mean the 
femtocell must be OFF, 0, the femtocell must be in dormant mode and 1, the 
femtocell must be ON. 
 

Table 5.5: Fuzzy rules. 

Reference 
Distance (RD) 

Cell 
Status (CST) 

Proposed Cell 
Status (PCS) 

VC - ON 
VF - OFF 
C OFF DM 
C DM ON 
C ON ON 
F OFF OFF 
F DM OFF 
F ON DM 

 

5.6 Simulation evaluation 

The evaluation of the proposed mechanisms is presented in this section. Firstly, an 
introduction to the simulation tool and the selected scenario is provided. Then, the 
proposed SON methods are assessed. 
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5.6.1 Simulation set-up 

5.6.1.1 Simulator overview 

The dynamic LTE system-level simulator described in [47] is selected to prove and 
evaluate the proposed SON mechanisms. Winner II [112] is the implemented 
propagation model at the simulator, as several propagation configurations and 
conditions are considered: indoor, outdoor, outdoor-to-indoor and indoor-to-outdoor 
scenarios. Likewise, shadowing is modeled following a spatially-correlated log-normal 
distribution with different standard deviations for outdoor and indoor users, whereas 
fast-fading is modeled following the Extended Indoor A (EIA) approach for indoor 
users [113]. Users can demand both VoIP or data services. Round-robin best channel 
scheduling is selected for VoIP traffic and proportional fair scheduling for data service. 
Common RRM features are also integrated into the simulator, such as Cell 
Reselection, Directed Retry (DR), HO based on ‘A3’ and ‘A5’ events [79], etc. The 
most important simulation parameters and features are shown in Table 5.6. A full 
simulator description can be found in reference [47]. 

 
Table 5.6: Simulation parameters. 

Propagation Model Indoor-indoor Winner II A1 
 Indoor-outdoor Winner II A2 
 Outdoor-outdoor Winner II C2 
 Outdoor-indoor Winner II C4 
Base Station Model EIRP 3 (HeNB) / 43 (macro) dBm 
 Directivity Omni (HeNB) / tri-sector (macro) 
 Access Open (HeNB) / open (macro) 
Mobile Station Model Noise Figure 9 dB 
 Noise Density −174 dBm/Hz 
Traffic Model Calls Poisson (avg. 0.43 calls/user·h) 
 Duration Exponential (avg. 100 s) 
Mobility Model Outdoor 3 km/h, random direction & wrap-around 
 Indoor Random waypoint 
Service Model Voice over IP 16 kbps 
 Full Buffer  
RRM Model Bandwidth 1.4, 3 and 5 MHz (6, 15 and 25 PRBs) 
 Access Control Directed Retry (Threshold=−44 dBm) 
 Cell Reselection Criteria S, R 
 Handover Events A3, A5 
 Scheduler Voice: Round-Robin Best Channel 

Full buffer: Proportional Fair 
Time Resolution  100 ms 
SON Algorithm Epoch Time 60 seconds 
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5.6.1.2 Scenario 

A realistic scenario has been designed and introduced into the simulator to verify 
the proposed algorithms. A tri-sectorized LTE macrocell is deployed in a 3 km long 
and 2.6 km wide area where the wrap-around technique avoids edge effects (left image 
in Figure 5.19). A building is placed inside this environment 500 m far from the site. 
This building models the Departure Lounge of Malaga Airport, which is a 265 m long 
and 180 m wide building (right image in Figure 5.19). In order to guarantee the 
cellular network coverage and to increase the indoor capacity, twelve open access LTE 
femtocells (HeNB) have been placed in the building. They are distributed to ensure 
coverage area by at least two femtocells in the whole building. This scenario presents a 
frequency reuse factor of 1. In this context, outdoor macrocells might introduce indoor 
interference due to the building proximity to the sites. Handovers between macrocells 
and femtocells are supported. At the beginning of the tests, macrocells and femtocells 
have been set up to transmit 43 dBm and 3 dBm, respectively. 

 

 

Figure 5.19: Simulated scenario. 

 
Femtocells need a period to set the configuration file to update femtocell 

parameters (i.e., to change the transmission power for the proposed SON methods) 
which normally takes tens of seconds. For these reasons, the algorithms are triggered 
every minute while different hotspots are created every hour and the simulation lasts 
24 hours. Conversely, macrocell parameters are not modified. 

At the airport, the user mobility is based on a random waypoint model [114], which 
reproduces normal passenger behavior and movement at the airport. These movements 
are defined to create non-homogeneous user distributions and hotspots where network 
congestions may occur. A specific femtocell could be overloaded during certain 
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minutes, emulating a delayed boarding (passengers use their smartphones waiting for 
boarding). Hence, the simulated scenarios are initially well-balanced and there are no 
congestion issues. After several minutes, new passengers arrive to the boarding gate, 
thus overloading the femtocell in charge of covering that area. That situation lasts 
several minutes until the passengers of the delayed flight can start boarding and 
network congestion issues disappear.  

 

5.6.1.3 Analysis of internal procedures 

Figure 5.20 shows examples of HPLM for some of the deployed cells. Initially, 
beacons were placed each 2 m to emulate the transient response and to gather PRX 
samples at those positions. In addition, the resolution of the HPLM is set to 50 cm. 
Thus, those positions with no PL information are estimated based on equation (5.14).  

 

    

 (a) Macrocell I (Sector 1) (b) Femtocell II 

       

 (c) Femtocell IV (d) Femtocell XI 

Figure 5.20: Example of HPLM. 

 
Figure 5.21(a) presents an example of the classical coverage area in the studied 

scenario. In turn, the proposed SCM is depicted in Figure 5.21(b). 
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(a) Classical coverage areas 

 

(b) Proposed cell areas (SCM) 

Figure 5.21: Estimated SCM. 

 
To ensure that all positions are always simultaneously covered by at least two 

femtocells (it would be a requirement of the cellular-indoor positioning system detailed 
in the field trial), the minimum value of transmission power variation is limited to -30 
dB. The maximum increment is set to 10 dB as the femtocells maximum transmission 
power is restricted to 13 dBm (initially 3 dBm). 

 

5.6.2 Simulation results 

Initially, the fuzzy-based MLB mechanisms are assessed. Then, the proposed 
context-aware SON methods are discussed. 
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5.6.2.1 Fuzzy-based MLB mechanisms 

Firstly, a sensitivity study is performed to analyze the performance of the 
algorithms with regard to the changes in the membership functions. Secondly, the 
global network and hotspot (most congested cell) simulation results are presented and 
described in a specific scenario: femtocells are limited to maximum 8 connected users 
and 1.4 MHz bandwidth. Thirdly, the study is extended to different femtocells’ 
capacity deployments (max. 4, 8, 16 and 32 users) and bandwidth (1.4, 3 and 5 MHz).  

 

5.6.2.1.1 Sensitivity study 

Initially, five sets of membership functions with different interval of definition are 
adjusted by experts for each input indicator (𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 and 𝑈𝑈𝑈𝑈𝑑𝑑𝑑𝑑). These intervals 
change in steps of 0.025 in the range of ±0.05 (keeping the shape of the membership 
function and the symmetry) according to the ones illustrated in Figure 5.4(b) and 
Figure 5.5(b). Additionally, another five sets of membership functions with different 
intervals, out of these recommendations, were evaluated. A sensitivity study is 
performed in the previous scenario where the maximum number of active connections 
is restricted to 4 users and the femtocell bandwidth is 1.4 MHz. Table 5.7 shows the 
performed sensitivity study where the UDR indicator has been evaluated. On the one 
hand, the analysis shows that the algorithm’s performance was not very sensitive to 
the set of membership functions proposed by experts (see the evaluation of Set 1 to Set 
5). On the other hand, membership functions different to the recommendations of 
experts (Set 6 to Set 10) show (as expected) lower system performance. Therefore, it is 
assumed that membership functions that significantly differ from experts’ 
recommendations would probably decrease the algorithm’s performance. 

 
Table 5.7: Sensitivity analysis (UDR [%]). 

 
Max. 4 users/femtocell (1.4MHz) 

 
Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 

PLS 3.6458 3.6594 3.6487 3.6624 3.6548 5.157 5.2368 5.4861 5.1958 5.3682 
PUS 1.2351 1.241 1.2115 1.2254 1.2388 4.1253 4.3672 4.6985 4.1687 4.8372 

 

Finally, the set of membership functions with the lowest UDR (Set 3) is 
implemented (functions presented in Figure 5.4 and Figure 5.5). Note that, these 
membership functions are also implemented in other deployments where femtocells 
present different capacities (8, 16 and 32 users) and frequencies (3 MHz and 5 MHz). 
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5.6.2.1.2 Assessment of the results: 8 users at 1.4 MHz 

The first analysis corresponds to the situation in which all femtocells limit is set to 
8 active users and the network bandwidth is 1.4 MHz, i.e., it supports 6 PRBs. Both, 
the global network and the hotspot performance are assessed in these tests.  

Figure 5.22(a) illustrates the UDR indicator during one hour simulation. This 
indicator is collected every minute as vertical lines depict. This figure represents the 
network analysis when there is no optimization method implemented at this scenario 
(No OPT - blue stem) and the performance of the four MLB algorithms. The average 
value during the simulation is also shown for each method (horizontal lines).  

The non-optimized situation (blue stem with circles), which represents the absence 
of MLB methods, shows no congestion issues at the beginning and at the end of the 
evaluation, i.e., no users are dissatisfied. However, the network displays a high 
percentage of dissatisfied users during the overloaded period (from minute 30 to 50). 
Sometimes, the ratio of dissatisfied users reaches UDR=50%, i.e., half of the users that 
attempt to access the network in that minute are rejected or connected users are 
dropped. On average, this network indicator is 10% (horizontal blue line), which is 
higher than the values typically accepted by mobile operators. 

 

 

(a) Network performance (max. 8 users/femto and 1.4 MHz) 

 

(b) Hotspot performance (max. 8 users/femto and 1.4 MHz) 

Figure 5.22: UDR performance (1.4 MHz). 
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The PTS method (red stem with triangles) starts to reduce the blocked calls after 
detecting them, therefore, the UDR decreases as well. Nevertheless, due to the traffic 
fluctuations, peaks of UDR are obtained. Thanks to this mechanism, the average UDR 
is reduced to about 4%. However, as previously explained, this mechanism needs a 
large period of time to converge.  

The PLS mechanism (green stem with squares) shows improved results because it 
makes use of the occupied radio resources as input, decreasing the number and the 
value of dissatisfied users’ situations. The horizontal green line in Figure 5.22(a) shows 
an improvement over 7% from the non-optimized situation and 1% from the PTS 
method, getting an average value of UDR below 3%. Nevertheless, its 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑(𝑐𝑐𝑐𝑐) 
input does not reflect the most restricted factor for femtocells because it usually offers 
enough bandwidth to serve more users than the femtocell is able to support in 
connected mode. Thus, there are free radio resources and the algorithm is not triggered 
but the femtocell is totally congested (no more users are accepted).  

The PUS method (magenta stem with inverse triangles) reduces the users’ 
dissatisfaction. However, the performance of the algorithm decreases when the required 
user’s QoE is very high (huge amount of radio resources are demanded by the users). 
With this method there are only problems for an instant (minute 35) where few users 
are connected to the network but a lot of radio resources are required. Average UDR is 
lower than 1% (horizontal magenta line). 

The PLUS method (yellow stem with stars), as expected, provides the best results. 
In this case, the algorithm is aware of the amount of free space to access the femtocell 
both, in terms of active users and radio resources. The figure shows the same problem 
as with the PUS method for an instant (minute 35), where few users are connected to 
the network but a lot of radio resources are required. However, the UDR is lower 
because it also optimized the parameters according to the occupied radio resources. In 
average during one hour (horizontal yellow line), the value of UDR is around 0.2%, 
which complies with the usual operators’ requirements. 

UDR indicator at the most overloaded cell (hotspot) is shown in Figure 5.22(b). 
UDR evolves in the same way as in Figure 5.22(a), although it is higher in all cases. In 
average, around 30% of users are dissatisfied, while the optimization PTS, PLS, PUS 
and PLUS methods get around 18, 7, 2 and 1% of UDR respectively. 

 

5.6.2.1.3 Assessment of the results: Other configurations 

The previous study has been extended to other femtocell deployments (different 
number of maximum connected users) and different bandwidth. The performance in 
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terms of the average value of UDR is depicted in Figure 5.23 for the different use 
cases. 

 

 

(a) 1.4 MHz (6 PRBs) 

  

(b) 3 MHz (15 PRBs) 

 

(c) 5 MHz (25 PRBs) 

Figure 5.23: Average UDR performance. 

 
The minimum LTE bandwidth (1.4 MHz) is depicted in Figure 5.23(a). The UDR 

is reduced when the femtocell limitations in the maximum number of active users is 
increased. For the scenarios of maximum 4 and 16 active users per femtocell, the same 
explanation of previous subsection (8 active users at 1.4 MHz) is valid. Conversely, for 
the scenario of maximum 32 active users per femtocell, depending on the experienced 
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users’ quality and demand, sometimes the femtocell allows less than 32 simultaneously 
connected users because there are no available resources. Likewise, at another time, 
the femtocell allows 32 users because there are free radio resources. The reason is 
related to the RRM configuration. According to this, all the algorithms have 
comparable average UDR value except the PLUS method. Those situations overload 
femtocells adjacent to the hotspot and, many handover attempts fail (dropped 
connections appear) because those adjacent cells are already fully occupied (active 
users or radio resources). It means that the PUS method will not properly work all the 
time, the same for the PLS method. However, this issue is successfully fixed thanks to 
the PLUS method. Additionally, commercial femtocells could avoid this problem 
because most of them work with wider bandwidth (normally > 3 MHz). 

Similar simulations have been carried out with higher bandwidth (3 MHz), as 
Figure 5.23(b) depicts. This time, the maximum 32 users per femtocell deployment has 
enhanced UDR and, in particular, the PUS method presents much better performance 
compared to the 1.4 MHz case because the network available radio resources are 
higher. For the other use cases, the network performance is similar to the previous 
bandwidth (1.4 MHz) deployments. 

Finally, the network bandwidth was increased to 5 MHz. Figure 5.23(c) shows the 
overall network improvement achieved thanks to the PLUS method. It should be 
noticed that the higher the network bandwidth, the worse the PLS method works. 
This is due to the fact that the network bandwidth is increased but the occupied radio 
resources are the same (for most network services). 

An indicator which concerns operators is the HO signaling load (measured by the 
UHR). The higher the number of handovers the network manages, the more expenses 
the operator should afford. At Figure 5.24, results have shown that, in average, there 
is around one handover per user for all the methods. This is related to both pilot and 
data transmission powers are jointly tuned. Hence, changing and resizing femtocell 
areas do not increase signaling load, in consequence operator’s expenses are the same.  

To summarize, all methods have reduced users’ dissatisfaction while the network 
signaling load is held. At indoor networks where different bandwidth and types of 
femtocells are analyzed, both femtocell radio resources and maximum number of active 
users supported by the femtocell must be considered in MLB methods. Proposed PLS 
and PUS methods provide good results, but their performance depends on the 
predominant kind of traffic in the femtocells. The proposed PLUS method, however, 
led to the best network and hotspot performance for all situations with fast traffic 
fluctuations. 
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(a) 1.4 MHz (6 PRBs) 

   
(b) 3 MHz (15 PRBs) 

  
(c) 5 MHz (25 PRBs) 

Figure 5.24: Average UHR performance. 

 

5.6.2.2 Context-aware load balancing mechanisms 

Firstly, a sensitivity study is performed to analyze the performance of the 
algorithms with regard to the changes in the defined thresholds. Secondly, the 
assessment of UD, VM and MR methods is detailed in four scenarios (maximum 
femtocell capacity: 4, 8, 16 and 32 active users at 5 MHz bandwidth). Thirdly, the 
study is extended to analyze the impact of users’ position error in the proposed 
context-aware mechanisms. Finally, the results of the coordination of the VM and MR 
methods and the ES method are discussed.  
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5.6.2.2.1 Sensitivity study 

The performance of the proposed methods would depend on the configuration of 
their thresholds. These thresholds could be defined based on: 

• The operators’ experience, policies or priorities in this field: expert engineers 
propose different configuration parameters based on their knowledge in this kind 
of networks. Then, these thresholds could be slightly modified to reach the 
optimal configuration. 

• A sensitivity study of the UDR indicator: the femtocell deployment is simulated 
with different thresholds to estimate the lowest values of UDR. This procedure 
is the one followed to get the thresholds of the proposed mechanisms. 

 

UD method 

Figure 5.25 shows the average values of UDR depending on 𝑆𝑡ℎ and 𝑄𝑡ℎ in steps of 
10 and a deployment of femtocells with maximum 32 active users simultaneously at 5 
MHz. The minimum value of UDR is obtained when the ratio of connected users, 𝑆𝑡ℎ, 
and the average ratio of occupied radio resources, 𝑄𝑡ℎ, is over 50 and 60, respectively. 
Under this configuration, the algorithm reduces the UDR to 1.6%. Note that the 
performance of the system is not very sensitive to the parameter selection (it would be 
around 2.5% of UDR) when the value of the selected parameters is below 100 (100 
means the location-aware method is not triggered). In consequence, this system would 
not require a complex study to select the optimal parameters.   

 

Figure 5.25: UD method - Sensitivity study. 
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VM method 

Figure 5.26 shows the average values of UDR depending on 𝑆𝑡ℎ and 𝑇𝑡ℎ in steps of 
10 and a deployment of femtocells with maximum 32 active users simultaneously at 5 
MHz. The minimum value of UDR is obtained when the ratio of femtocell connected 
users, 𝑆𝑡ℎ, is over 70 and the average ratio of neighbors femtocell connected users, 𝑇𝑡ℎ, 
is below 60. Under this configuration, the algorithm reduces the UDR to 1.1%. Similar 
to UD sensitivity study, this system would not require a complex study to select the 
optimal parameters as the performance of the system is not very sensitive to the 
parameter selection (it would be around 2% of UDR) when the value of the selected 
parameters is below 100 (100 means the location-aware method is not triggered).   

 

Figure 5.26: VM method - Sensitivity study. 

 

MR method 

Figure 5.27 shows the average values of UDR depending on 𝑆𝑡ℎ and 𝑇𝑡ℎ in steps of 
10 and a deployment of femtocells with maximum 32 active users simultaneously at 5 
MHz. The minimum value of UDR is obtained when the ratio of femtocell connected 
users, 𝑆𝑡ℎ, is over 50 and the average ratio of neighbors femtocell connected users, 𝑇𝑡ℎ, 
is below 40. Under this configuration, the algorithm reduces the UDR to 1.8%. Similar 
to previous methods, this system would not require a complex study to select the 
optimal parameters as the performance of the system is not very sensitive to the 
parameter selection (it would be around 2.5% of UDR) when the value of the selected 
parameters is below 100 (100 means the method is not triggered). 
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Figure 5.27: MR method - Sensitivity study. 

 

5.6.2.2.2 Assessment of the results 

The proposed algorithms are compared to the non-optimized network (baseline) 
and the PLUS algorithm described in subsection “5.4.1.4”. The challenge faced is 
threefold. Firstly, the UDR must be as low as possible. Secondly, a good QoE is 
expected to support the communication. Finally, the number of HOs should not be 
highly increased to keep the signaling data. 

According to the sensitivity study of the UDR indicator carried out for each 
method in the airport scenario, the optimal values for theses thresholds are: 𝑆𝑡ℎ = 50 
and 𝑄𝑡ℎ = 60 for UD method, 𝑆𝑡ℎ = 70 and 𝑇𝑡ℎ = 60 for VM method and 𝑆𝑡ℎ = 50 and 
𝑇𝑡ℎ = 40 for MR method.  

In order to accomplish an extensive and complete study, the evaluation of the 
algorithms was performed in four different indoor deployments depending on the 
femtocell capacity (maximum 4, 8, 16 and 32 active users). The number of users in the 
scenario has been established according to the analyzed cell capacity, e.g., for a 
femtocell capacity limit of 4 active users, 500 users per hour are simulated, whereas for 
a femtocell capacity limit of 8, a population of 1000 users per hour is defined. 

As aforementioned, femtocells need a period to set the configuration file (i.e., to 
change the transmission power) which normally takes tens of seconds. For this reason, 
the algorithms are triggered every minute while hotspots are created every hour at 
different places (see Figure 5.29).  
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Maximum femtocell capacity: 32 active users 

Initially, the network is well-managed and there are no accessibility or retainability 
issues (i.e., all the attempted connections are accepted and none of them are dropped). 
However, after 10 minutes, the number of active users in the network starts to increase 
and a specific area of the scenario becomes overloaded (e.g., a boarding gate). At this 
moment, femtocells close to that area would reach their maximum capacity and would 
have to reject/drop connections as Figure 5.28(a) shows (‘NO OPT’ – yellow line with 
triangles). That situation persists during more than 30 minutes, being UDR around 
7%. After that period, the number of active users is reduced and the network can then 
accept new requests. In average, the UDR is around 4% along one hour, which is over 
the maximum value accepted by most mobile operators’ policies. 

Now, the same scenario is optimized by the PLUS method. Figure 5.28(a) shows 
that this method (‘PLUS method’ – magenta line with dots) outperforms the non-
optimized case when the network is congested (3.5% vs 7% UDR), while the average 
value of UDR along one hour is reduced below 2%. The performance of the proposed 
VM method is also shown in Figure 5.28(a) (‘VM method’ – cyan line with circles), 
which enhances UDR over 50% in comparison with PLUS method. In the case of the 
UD method (‘UD method’ – dark blue line with reverse triangles), UDR is also better 
than the PLUS method. However, due to the use of the geometrical distances between 
the users to estimate the new transmission power of femtocells, the performance of this 
indicator is slightly lower compared to the VM method. This is related to the walls 
and obstacles in the scenario which makes two close users could receive quite different 
PRX. Open areas would help to make similar the proposed transmission power 
adaptation of these two methods. In case the PRX values are directly reported by the 
users, the MR method (‘MR method’ – green line with crosses) outperforms the PLUS 
method but the UDR performance is increased compared to the location-aware 
methods. The main reason of the increment and the fluctuations of the indicator on 
the time, is related to the channel instability: shadowing, multi-path reflections, wall 
obstructions, etc., although the terminal protocol stack (Layer 1 and Layer 3 [79]) 
minimizes the impact of fast-fading (∆𝑓 ≈ [±5𝑑𝑑]).  

The channel quality is directly related to the previous UDR indicator. For the non-
optimized case, the level of MCQI is the highest even if there are accessibility or 
retainability issues, as Figure 5.28(b) shows. This is due to the fact that these users 
present the best CQI levels. Nevertheless, when they have to handover and the target 
femtocell is full, these users are dropped (mainly due to handover failures). Conversely, 
the self-optimization mechanisms have to sacrifice network resources per call (i.e., CQI 
is reduced) in order to avoid accessibility or retainability issues (i.e., enhance UDR). 
Besides, the level of MCQI is still good enough to ensure high quality connections for 



 
Indoor mobility load balancing techniques 137 

all of them. Note that, blocked/dropped calls are not necessary due to bad CQI, other 
issues could finish the calls keeping a good CQI (calls could abnormally finish because 
of a problem of missing neighbor cells, cell capacity, lack of radio resources, etc.). 
Analyzing this issue from the other side, bad CQI means the calls might be 
blocked/dropped and the mean performance of MCQI would be decreased. 

 

(a) UDR 

 

(b) MCQI 

Figure 5.28: Network performance – 32 users. 

 
Regarding the impact of the power changes on handovers, the average of UHR is 

around 0.85 for the non-optimized network. The PLUS method presents a UHR of 0.8, 
while the MR method increases the UHR to 0.9. The proposed location-based methods 
(VM and UD methods) have a UHR of 0.83. As expected, re-sizing the coverage area 
of femtocells involves an increase rate in the number of handovers per user when the 
self-optimization algorithm is triggered. But, as both pilot and data transmission 
powers are jointly tuned, once the network is optimized the number of handovers is 
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decreased compared to the non-optimized network. That is happening because less 
handovers are required when the traffic in the network is balanced. 

 

 

Figure 5.29: Overloaded areas (hotspots). 

 
Additionally, the algorithms were also evaluated during one day simulation where a 

hotspot was created twice in a different place of the airport each hour as Figure 5.29 
shows. Table 5.8 presents the average values of each indicator in that period. It could 
be observed that the results are comparable to the results of one hour simulation. 

 
Table 5.8: Network performance (maximum 32 active users per femtocell). 

 NO OPT 
PLUS 

Method 
MR 

Method 
VM 

Method 
UD 

Method 
UDR [%] 4.1 2.2 1.8 1.1 1.6 
MCQI 15 12.7 13.0 13.2 13.1 
UHR 0.86 0.82 0.91 0.84 0.83 

 

Maximum femtocell capacity: 16 active users 

In this scenario, the femtocell capacity has been diminished (up to 16 active users 
per femtocell) as well as the number of pedestrian sitting/walking through the airport. 
Table 5.9 illustrates the network performance for one day simulation. Similar behavior 
to the previous scenario is observed. In this case, the non-optimized network presents 
an average UDR around 4.4% while the PLUS method is able to reduce that indicator 
till 2.4%. The MR method is able to improve previous network performances (2.1%). 
Focusing on the location-aware methods, VM and UD methods reduce this value to 
1.3% and 1.8% respectively. Note that the UDR relative-gain of the location-aware 
methods compared to the MR method has increased. As the number of active users to 
estimate the transmission power would be fewer, the average error of those estimations 
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compared to the expected transmission powers would be higher. It impacts on the 
performance of the MR algorithm. For example, in the MR method, a number of users 
should hand over but due to fading, the new transmission power adaptations might be 
not enough to trigger the handover processes for some users. When the femtocell 
capacity is high, many users would be successfully handed over. However, when the 
femtocell capacity is low, few users would successfully handover. Then, the ratio of 
active users in the overloaded femtocell is lower in the first situation than in the 
second. Regarding the location-aware methods, once the database has a wide variety of 
PRX samples, that issue is insignificant but the performance of the system would not 
be improved as much as in the case of the MR method when the femtocell capacity is 
increased (e.g., from femtocells with 16 active users to femtocells with 32 active users). 

From the point of view of the CQI and the UHR, all methods present proportional 
results to previous scenario. Note that, due to the cited problem of fading in MR 
method, the increment of UHR value is higher at this method compared to the others. 

 
Table 5.9: Network performance (maximum 16 active users per femtocell). 

 NO OPT 
PLUS 

Method 
MR 

Method 
VM 

Method 
UD 

Method 
UDR [%] 4.4 2.4 2.1 1.3 1.8 
MCQI 15 12.9 13.2 13.3 13.2 
UHR 0.89 0.84 0.99 0.86 0.85 

 

Maximum femtocell capacity: 8 active users 

Now, the maximum femtocell capacity is 8 active users and the number of users in 
the airport is reduced to half. For this scenario, as the number of active users is lower, 
the relative-gain of average UDR value for MR method and context-aware methods 
(VM and UD) is higher. The location-aware methods outperform the others, being the 
VM method the one with the lowest UDR. The same behavior is observed from the 
CQI and the UHR level (see Table 5.10).  

 
Table 5.10: Network performance (maximum 8 active users per femtocell). 

 NO OPT 
PLUS 

Method 
MR 

Method 
VM 

Method 
UD 

Method 
UDR [%] 4.6 2.7 2.5 1.5 1.9 
MCQI 15 13.2 13.3 13.5 13.3 
UHR 0.97 0.89 1.22 0.94 0.91 
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Maximum femtocell capacity: 4 active users 

This use case evaluates the network where maximum femtocell capacity is 4 active 
users and the number of users on the scenario is proportional to previous scenarios. 
Here, all the methods present similar results to previous scenario as Table 5.11 
illustrates.  

 
Table 5.11: Network performance (maximum 4 active users per femtocell). 

 NO OPT 
PLUS 

Method 
MR 

Method 
VM 

Method 
UD 

Method 
UDR [%] 5.2 3.2 3.0 1.7 2.0 
MCQI 15 13.4 13.4 13.5 13.4 
UHR 1.12 0.96 1.35 1.05 1.03 

 
To summarize, it has been shown how problematic temporary network congestion 

could be managed to enhance UDR. The proposed algorithms enhance the operator 
network over the non-optimized situation and outperform the PLUS algorithm. The 
VM and UD methods are stable in the four scenarios, whereas the MR method 
improves when the femtocell capacity and the number of users is high. This means, the 
higher the number of users is, the more similar the average PRX from MR is, 
compared to PRX from context-aware methods. Conversely, UD method is 
recommended for open areas as walls and obstacles between users could reduce its 
performance. In any case, the VM method outperforms the other methods. 

In the previous analysis the influence of the location accuracy has not been 
addressed. Next subsection assesses the performance of the VM and UD methods when 
the positioning system provides the users’ position with some degree of inaccuracy. 

 

5.6.2.2.3 Impact of users’ position error  

The indoor positioning system could present some inaccuracy in the users’ 
positions. Consequently, the PRX information obtained from the HPLM might not be 
the expected PRX value. This situation is evaluated in this study to assess the 
robustness and reliability of the proposed context-aware MLB methods (UD and VM 
methods) in indoor femtocell environments. 

To emulate this situation, the users’ position error is modeled as a normal 
distribution Ɲ(𝜇,𝜎2) where 𝜇 = {1, 2, 4, 8, 16, 32} m and 𝜎 = 𝜇

3�  m, being the mean 
and the standard deviation respectively. According to this, Figure 5.30 depicts the four 
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previous use cases where the users’ location accuracy is modified in relation to the 
precision error supplied by different positioning systems. The average values of the 
UDR over one day simulation for each MLB algorithm are presented in the graphs.  

For all the deployments and location-aware methods, as expected, the users’ 
satisfaction decreases when the average position error increases. Figure 5.30(a) (32 
users/femtocell) shows the good performance of the location-aware methods compared 
to the others when the average position error is around 4 m for VM method and less 
than 3 m for the UD method. The SON system should trigger the MR method (i.e., 
get the PRX from the users) or the PLUS method when the accuracy of the indoor 
positioning system is higher than the cited values. In other case, the network 
performance would be degraded, being unacceptable for the operators. Figure 5.30(b) 
(16 users/femtocell) presents similar behavior. Now, the SON system should reject VM 
method when the average position error is over 4 m while the UD method is limited to 
average position errors below 3 m. Figure 5.30(c) (8 users/femtocell) continues with 
similar pattern. In this case, the accuracy of the indoor positioning system is a little 
less restricted. The average position error could be up to 5 m for the VM method and 
3 m for the UD method. The same trend can be observed in Figure 5.30(d) (4 
users/femtocell), where the non-location-aware methods should be selected when the 
average position error is over 6 m for the VM method and 4 m for the UD method. 

 

  

 (a) 32 users/femtocell (b) 16 users/femtocell 

  

 (c) 8 users/femtocell (d) 4 users/femtocell 

Figure 5.30: UDR based on different average position errors. 
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The results are performed with information from 100 simulations for each average 
position error, use case and method. The 95% confidence interval is around ±0.25% of 
UDR for any use case and method with 1 m of average position error. It is extended 
when the average position error is increased: from around ±2% of UDR for maximum 
4 active users per femtocell to ±0.75% for 32 active users. 

These accuracies are not very demanding and could be achieved with the proposed 
RFID-based indoor positioning system in Chapter 4. Other indoor-positioning systems 
could be also good candidates, like the one described in [115] where the 90th percentile 
error of the proposed method is lower than 3 m and the average position error is 1.5 
m. In addition, smartphone-based indoor-positioning systems, like those cited in [38], 
improved the average position error to 1 m thanks to the integration of the sensors 
information into their localization engine [116]. 

Besides, the mobility pattern of users (i.e., the users’ positions change in short 
periods) and large-scale deployments (i.e., estimation of thousands of users) could be a 
challenge for current indoor-positioning systems. However, the proposed location-aware 
systems do not require a continuous estimation of the users’ positions (i.e., the 
periodicity of triggering the indoor positioning system could be the same of the SON 
methods). In large-scale deployments, distributed indoor-positioning systems could be 
implemented to address the calculation of the users’ positions. Additionally, in case of 
an indoor-positioning system based on PRX from cellular mobile infrastructure (e.g., 
femtocells), both positioning system and SON entities must be coordinated. Each time 
a SON algorithm tunes femtocells transmission power, it must be notified to the 
positioning system algorithm in order to update the fingerprint databases. 

 

5.6.2.2.4 Load balancing and energy savings coordination 

The proposed coordinated SON system is analyzed in the same scenario where the 
maximum femtocell capacity is 32 active users. 

An indicator based on the percentage of active cells over the number of deployed 
cells in the scenario is computed as:  

 

𝐴𝐴𝐴 [%] = 100 ∙
𝑁𝑎𝑎𝑎𝑎𝑎𝑎_𝑐𝑐𝑐𝑐𝑐

𝑁𝑐𝑐𝑐𝑐𝑐
. (5.36) 

 
ACR (Active Cells Rate) provides an estimation of the energy consumption, 

although it does not measure or take into account the cell transmission power. 
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Therefore, a significant indicator to measure the overall power saving is the power 
transmission ratio (PTR), calculated as: 

 

𝑃𝑃𝑃 [%] = 100 ∙
∑ 𝑃𝑃𝑃𝑖
𝑁𝑐𝑐𝑐𝑐𝑐
𝑖=1

∑ 𝑃𝑃𝑃𝑚𝑚𝑚
𝑘𝑁𝑐𝑐𝑐𝑐𝑐

𝑘=1

, (5.37) 

 
where 𝑁𝑐𝑐𝑐𝑐𝑐 is the number of deployed cells, 𝑃𝑃𝑃𝑖 is the current transmission power of 
cell 𝑖 and 𝑃𝑃𝑃𝑚𝑚𝑚

𝑘  is the maximum value of transmission power that cell 𝑘 can be set. 
Hence, to reduce the energy consumption, low values of these indicators are desirable. 

The defined ES method has been adapted to gather PRX directly measured by the 
users. This means, no users’ position is required. Therefore, the assessed algorithms are 
referenced as: the MR method and the non-location-aware ES method as the non-
location-aware coordination system (COOR), and the VM and the location-based ES 
methods as the location-based coordination system (COOR+LOC). 

 

      

 (a) UDR (b) MCQI 

        

 (c) ACR (d) PTR 

Figure 5.31: Network performance. 

 
The performance of the proposed VM method is shown in Figure 5.31(a) (‘VM 

method’ – cyan line), which enhances UDR around 50% in comparison with the PLUS 
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method. In the case of the COOR+LOC (‘COOR+LOC method’ – orange line), UDR 
is also better than the PLUS method. However, due to the time femtocells need to be 
switched on or awake, the performance of this indicator is slightly lower compared to 
the VM method. A shorter execution period for changing the status of the femtocell 
would help to fix this shortcoming. The MR (‘MR method’ – green line) and COOR 
(‘COOR method’ – red line) methods outperform the PLUS method but decrease the 
UDR performance compared to the location-aware SON methods. As previously 
detailed, it is due to the radio channel instability. 

From the point of view of the system energy consumption, Figure 5.31(c) and 
Figure 5.31(d) illustrate the network energy performance. On the one hand, the ACR 
indicator shows how the COOR and COOR+LOC mechanisms either switches off or 
turns into dormant mode many femtocells of the scenario, while the other methods 
keep all femtocells awake. On the other hand, the PTR is lower for the PLUS, MR and 
VM methods. This is due to the fact that the femtocell transmission power is 
decreased to balance traffic (in comparison to the maximum transmission power level 
set by default). The PLUS algorithm tends to return to the maximum power level once 
the network is balanced while the MR and VM algorithms keep the last power 
configuration. The COOR and COOR+LOC methods provide even higher energy-
savings in the network because femtocells could be switched off. 

Regarding the impact of the power changes on handovers, the average of UHR is 
around 0.85 for the non-optimized network. The PLUS method presents a UHR of 0.8, 
while the non-location-aware methods, MR and COOR methods, increase the UHR to 
0.9 and 0.91 respectively. The proposed location-based methods (VM and 
COOR+LOC) have a UHR of 0.83.  

Finally, the algorithms were also evaluated during one day simulation where a 
hotspot was created in a different place of the airport each hour (see Figure 5.29). 
Table 5.12 presents the average values of each indicator in that period. It could be 
observed that the results are comparable to the results of one hour simulation. 

 
Table 5.12: Network performance (maximum 32 active users per femtocell). 

 NO 
OPT 

PLUS 
Method 

MR 
Method 

VM 
Method 

COOR 
Method 

COOR+LOC 
Method 

UDR [%] 4.1 2.2 1.8 1.1 1.9 1.2 
MCQI 15 12.7 13.0 13.2 12.6 12.9 

ACR [%] 100 100 100 100 80.2 78.4 
PTR [%] 100 81.8 88.1 86.7 71.3 68.4 

UHR 0.86 0.82 0.91 0.84 0.93 0.85 
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5.7 Field trial evaluation 

Some of the previous algorithms have been also evaluated in a field trial. Next 
subsections will detail the global infrastructure and the trial results. 

 

5.7.1 Trial set-up 

The global indoor-positioning system devised to supply real-time information about 
users’ position to SON mechanisms is based on the management architecture for 
context-aware self-organizing small cell networks defined in Chapter 3. In such 
architecture a local centralized element is in charge of running the SON system 
functionalities, serving also as aggregator of the information coming from the 
femtocells and context-aware data. With this local centralized element, non-additional 
direct communication between the femtocells is introduced by the system. 

 

5.7.1.1 System overview 

The global system overview is presented in Figure 5.32. It shows the two main 
system blocks (Positioning system and SON system), the interfaces between them and 
the femtocells network and the designed messages for the exchange of information. 
Context information (PRX, users’ position and orientation) is obtained through users’ 
applications following the architecture in Chapter 3. These data are the main 
information sources for the Positioning and the SON systems. Note that the 
availability of some of these data would depend on the terminal manufacturer. 

 

5.7.1.2 System interfaces 

To connect the Positioning and the SON systems, two interfaces labeled as SS-LS 
interface and LS-SS interface have been defined (see Figure 5.32). The interface LS-SS 
is conceived to send the real-time users’ position to the SON system. The interface SS-
LS is in charge of providing to the positioning system notifications about the cellular 
network such as a cell outage or cell transmission power variations, which can be used 
in the position assessment procedure. In order to ensure no information is missing in 
the global system, the well-known TCP is selected as the communication protocol. 
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5.7.1.3 Smartphone APP2 

In classical OAM systems, PRX information is normally acquired from users’ 
measurement reports. However, that information is rarely provided in real-time to the 
OAM layer. In order to obtain real-time reports, different solutions are envisaged: 
control plane approaches (making use of the RRM-related terminal reports available at 
the femtocells), user plane (via applications installed on the terminal) or making use of 
specific OAM features such as Minimization of Drive Test (MDT). 

MDT solutions are often limited to specific users in a non-real-time way so they are 
not ideal to support online SON mechanisms. While control plane messages could 
support the required information, such solution would require either the operators to 
give access to their networks or the adoption by femtocell manufacturers, leading to 
possible compatibility issues. Therefore, as the provision of indoor navigation would be 
performed through user applications, the integration at application level of the PRX 
reporting to the OAM system is assumed, without discarding other solutions. 
Additionally, PRX values are averaged at Layer 1 and 3 [79] of the terminal protocol 
stack minimizing the impact of fast-fading in its values. 

A smartphone app reports this type of data as well as it might provide to the SON 
mechanisms any other relevant context information required. 

 

   

Figure 5.32: Global location-aware SON architecture. 

 

                                     

2 The smartphone app and the communication between each element have been developed by the 
Universidad Carlos III de Madrid (UC3M), partner of MONOLOC project. 
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5.7.1.4 Cellular-based indoor positioning system3 

A fingerprint-based positioning engine, known as MILES (Mobile Indoor 
Localization Engine for SON), estimated the users’ positions. This positioning engine 
takes advantage of the interaction with SON mechanisms. It is conceived both to 
support SON mechanisms and use network information supplied by the SON system to 
update the positioning system according to power-related changes (cell outage, 
transmission power variations, etc.). 

Fingerprint-based techniques include both a training offline phase and a real-time 
phase. In the training offline phase, also known as calibration phase, a location 
fingerprint database is generated. To create this database, geo-referenced PRX 
readings in the four orientations (north, east, south and west) from different femtocells 
are measured by a terminal at known positions, which are referred as training points. 
In the real-time phase, a comparison between the real-time PRX measurements and 
the PRX stored in the offline phase is performed. The PRX information was easily 
gathered thanks to the use of smartphone terminals. The aforementioned application 
was installed in the terminals in order to report the captured information about the 
terminal, radio conditions and cellular network.  

This real-time positioning engine provided the users’ positions, having a CDF 
position error of 3 m for the 50% and of 5.9 m for the 90% in the field-trial (see 
scenario in subsection 5.7.1.6). This system made use of PRX and orientation 
information of the terminal to calculate its position. 

 

5.7.1.5 JSON messages 

The messages to communicate the different entities of the system are defined using 
the open standard format known as JSON. An example is illustrated on Figure 5.33. 
The ASCII text-encoding standard is used to code the characters of the messages. 

The Positioning system receives the PRX from the cellular network terminals 
involved in the positioning process, evaluates these measurements and estimates their 
position inside the indoor scenario. After that, the positioning system generates a 
notification which contains, among other information, the position of the user. This 
notification is sent to different entities of the system. A specific and well-defined JSON 

                                     

3 The cellular-based indoor positioning system has been implemented by the Universidad Politécnica 
de Madrid (UPM), partner of MONOLOC project. 
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message as the one presented on the right of Figure 5.33 is transmitted through the 
LS-SS interface to the SON system. 

 
HPLM  SON   POSITIONING SYSTEM  SON  

{ 
   "type":3, 
   "id":"355136052451195", 
   "timestamp":1372672468913,    
   "cellsGSM":[ 
      { 
         "mCellIdentityGsm":{ 
            "mCid":4551, 
            "mLac":16070, 
            "mMcc":214, 
            "mMnc":1, 
            "mPsc":50 
         }, 
         "mCellSignalStrengthGsm":{ 
            "mAsu":7, 
            "mBitErrorRate":0, 
            "mDbm":-99 
         }, 
         "mTimeStamp":1372672468835, 
         "mRegistered":true, 
         "mNetworkType":10, 
         "mTimeStampType":0, 
         "type":0 
      } 
   ] 
} 

 { 
   "type":4, 
   "id":"356708049297193", 
   "timestamp":1371804697246, 
   "timestampMeasure":1371804694362, 
   "position":{ 
      "latitude":40.512499903448, 
      "longitude":-3.674777418556, 
      "altitude":7.5, 
      "accuracy":1 
   }, 
   "localPosition":{ 
      "x":47.0975629391100700, 
      "y":28.1624215751835540, 
      "z":1.0000 
   }, 
   "referencePoint":{ 
      "latitude":40.512400000, 
      "longitude":-3.67510000, 
      "altitude":7.5000, 
      "x":9.86, 
      "y":-23.73, 
      "z":7.50, 
      "orientation":-24.00 
   }, 
   "lastReliableMeasure":1371804695308 
} 

Figure 5.33: JSON messages. 

 

5.7.1.6 Scenario 

A small-sized unplanned network composed by four 3G femtocells (Alcatel Lucent 
9361 Home Cell v2 [31]) has been deployed in a real office environment (see Figure 
5.34) in order to evaluate the proposed SON algorithms. Several macrocells are located 
outside the office. The femtocells are limited to 4 simultaneous connected users. This 
network provided data and voice services, being connected to the operator core 
network through a traditional ADSL (Asymmetrical Digital Subscriber Line) router. 
Three of them were directly plugged to the router through an Ethernet cable with the 
fourth femtocell being wireless connected (WiFi).  

The network has been initially configured to offer location based services, thus a 
specific configuration has been done taking into account different aspects: 

• The identifiers unequivocally label each femtocell into the environment. These 
identifiers are the PSC (Primary Synchronization Code) or the PCI depending 
on the underlying access technology, 3G or LTE respectively. To avoid 
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PSC/PCI collision or confusion, and to guarantee the required simultaneous 
coverage to offer indoor location services, four different PSCs have been 
configured in the network, one PSC code for each deployed femtocell (PSC_x1, 
PSC_x2, etc.). Areas with simultaneous coverage of two femtocells with the 
same PSC/PCI are avoided. Figure 5.34 shows the Cell ID (CID) and PSC 
assignment. 

 

 

Figure 5.34: Field-test. 

 
• The femtocell network has been configured in close access to have the 

environment under control and to prevent unexpected troubles caused by 
external agents. Thereby, only three subscribed terminals are able to connect to 
the femtocell network. 

   

 

 (a) Femto_x1 (green circle) (b) Femto_x2 (blue square) 

 

 (c) Femto_x3 (yellow reverse triangle) (d) Femto_x4 (red triangle) 

Figure 5.35: Initial RSCP. 

Name: Femto_x4
•CID: CID_x4
•PSC: PSC_x4

Name: Femto_x2
•CID:   CID_x2
•PSC:  PSC_x2

Name: Femto_x3
•CID:    CID_x3
•PSC: PSC_x3

Name: Femto_x1
•CID:   CID_x1
•PSC:   PSC_x1
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• Although the SON mechanisms will vary the transmission power of the 
femtocells into a range of values, both the CPICH power ([-50… 20] (dBm) step 
0.1) and the maximum transmitted power ([-50… 24] (dBm) step 0.1) have been 
set as initial configuration with the maximum power values. 

• Different cell reselection thresholds and handover margins have been configured 
depending on the access technology and the frequency used. These thresholds 
are based on the received signal quality of the serving cell.  

The average estimated PRX from each femtocell is stored in the HPLM database. 
These maps are shown in Figure 5.35. 

 

 

Figure 5.36: Graphical User Interface (GUI). 

 

5.7.1.7 SON application 

For monitoring what is happening in the femtocell network, a GUI (Graphical User 
Interface) has been developed as Figure 5.36 illustrates. It is composed of three parts:  
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• Received Signal Strength [dBm]: This window (top left) illustrates the 
PRX value from the serving cell (the icon identifies the femtocell) for each 
terminal (the color identifies the user) in real-time. 

• Self-Optimization (Estimated Power Variation [dB]): It depicts the self-
optimizing algorithm response (top right). In this case, it is the transmit power 
variation that should be set up per femtocell to balance the network. Each 
femtocell is identified by an icon and a color (see bottom bar of Figure 5.36). 

• Estimated Maximum PRX [dBm]: The scenario is showed in this window 
(bottom) where femtocells and users’ position are also integrated. The highest 
estimated values of PRX per position are represented on the scenario.  

 

5.7.2 Trial results 

Due to the complexity and the constraints to set the network configuration 
parameters on the mobile operator infrastructure, only two experiments were analyzed. 

 

5.7.2.1 Experiment 1 

The assessment of the proposed UD method is carried out in the described scenario. 
The system performance is compared to the non-optimized case and to the PLUS 
method described in subsection 5.4.1.4. Remember that, the PLUS method does not 
use the users’ position. 

These mechanisms are tested under several situations to evaluate both 
static/dynamic users’ distributions and the accuracy of the positioning system. The 
system parameters 𝑆𝑡ℎ and 𝑄𝑡ℎ are set to 50%. In the same way, ∆𝑇 is configured with 
the periodicity of triggering the algorithm, i.e., every five seconds to ensure stable 
information into the system.  

 

Static users’ distribution 

Here, four static (not moving) users are located around Femto_x2 coverage area 
(Figure 5.37). The UD method is evaluated in two ways. Firstly, users’ position is 
manually introduced into the optimization algorithm (Manual mode) in order to avoid 
errors in users’ position. Secondly, the process is repeated having the users’ position 
automatically provided by the indoor-positioning system (Automatic mode).  
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Figure 5.37: Users’ distribution. 

 
Initially, at 𝑡 = 0, the situation is a congested femtocell (Femto_x2) with four 

connected users. Hence, there is no capacity to allocate new users in this femtocell. 
However, from the point of view of radio resources, this overload is not detected due to 
the low traffic transferred per user. That situation is analyzed during five minutes. 

Subsequently, the UD method and the PLUS method perform a continuous analysis 
of the network (every 5 s). The algorithms propose the transmission power variation 
that must be applied to solve that congestion. That means, Femto_x2 power should 
be decreased. The UD method proposes an average of transmission power variation of 
Femto_x2 of –9 dB, meanwhile, the PLUS method proposes –6 dB. The latter is an 
adaptive method and it would require to change the transmission power of femtocells a 
few times before reaching the optimal values. The average of the transmission power 
variation (Avg. 𝛿𝛿𝛿𝛿) per femtocell of each method is depicted in Table 5.13. Note 
that, all femtocells were initially set to the maximum power. 

 
Table 5.13: Static users: Network configuration and performance. 

 
No optimization PLUS method 

UD method 
 Manual Mode Automatic mode 

 
Avg.  
δPtx 

Avg. 
Users 

Avg.  
δPtx 

Avg. 
Users 

Avg.   
δPtx 

Avg. 
Users 

Avg. 
δPtx 

Avg. 
Users 

Femto_x1 0 0 0 1 0 1 0 1 
Femto_x2 0 4 -6.0 3 -9.0 2 -9.1 2 
Femto_x3 0 0 0 0 0 1 0 1 
Femto_x4 0 0 0 0 0 0 0 0 
 

After that, the network is reconfigured with the suggested transmission power 
values. In the case of the UD method, the users are efficiently balanced in the network 
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(see Manual Mode and Avg. Users in Table 5.13), where a user is handed over to 
Femto_x1 and another to Femto_x3, leaving free space for new users in Femto_x2. 
However, the proposed values of the PLUS method are not the optimal ones to fully 
offload the congestion. Only a user is handed over to Femto_x3. Therefore, this 
method would need to analyze the new network situation to suggest new transmission 
power values. 

From the point of view of the accuracy of the positioning system, note that the 
results of the UD method are similar to the case of manually providing the users’ 
positions. That is because the indoor-positioning system introduces a low position error 
and, in average, the trend of the polynomial function to estimate the PRX is similar in 
both cases. The performance of that indoor-positioning system is taken as an upper 
bound for the position error, which means, systems with higher position error would 
decrease the SON performance. In addition, that position error is consistent to the 
study in subsection 5.6.2.2.3. The literature [38] proposes many indoor-positioning 
systems with similar or better accuracy than the one implemented for this testbed. 

 

Dynamic users’ distribution 

In this case, three static users are located in Femto_x2 coverage area, whereas the 
fourth user is freely moving across the scenario as dotted blue line of Figure 5.37 
shows. Their positions are supplied in real-time by the indoor-positioning system 
(Automatic mode). 

 
Table 5.14: Dynamic users: Network configuration and performance. 

 No optimization PLUS method 
UD method 

(Automatic mode) 
 Avg.  δPtx Avg. Users Avg.  δPtx Avg. Users Avg.  δPtx Avg. Users 

Femto_x1 0 0.2 0 1.3 -2.3 1.4 
Femto_x2 0 3.5 -6.0 2.3 -10.2 2.1 
Femto_x3 0 0.3 0 0.4 0 0.5 
Femto_x4 0 0 0 0 0 0 

  

That situation is analyzed during five minutes. After that, the average of the 
transmission power variation for each femtocell is set in the network at the end of the 
evaluation process. These values (Avg. 𝛿𝛿𝛿𝛿) are illustrated in Table 5.14. Once the 
network is reconfigured, the average number of users per femtocell changes. These 
values are also shown in Table 5.14. In case the network is optimized by the PLUS 
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method, the average power is –6 dB because only Femto_x2 is overloaded for that 
mechanism. The adaptive process of this method will improve the network 
performance. The solution proposed by the UD method tries to, in average, balance 
the network by keeping Femto_x2 with the 50% of its capacity, i.e., two users, while, 
the other users are handed over to adjacent femtocells. 

 

5.7.2.2 Experiment 2 

The three mobile phones were located on a fixed position, as the GUI shows at the 
bottom image of the Figure 5.36 (three small squares as they are connected to 
Femto_x2). As previously explained, the color identifies the mobile phone and the 
shape of the icon indicates its serving cell, in this case, Femto_x2 (square) for all of 
them. The MLB algorithms (VM and MR methods) analyze the network situation 
every five seconds. Their configuration parameters are set to 𝑆𝑡ℎ = 70%, 𝑇𝑡ℎ = 60% 
and 𝑃 = 60 𝑚𝑚𝑚. All femtocells were initially set 10 dB below the maximum power. 

 

VM method 

The algorithm supported by the VM method is analyzed in Figure 5.38. For this 
situation, the algorithm is triggered because a femtocell (Femto_x2) is overloaded due 
to the fact that three active users are attached to it, occupying the 75% of the 
femtocell capacity 𝑙𝑓𝑓𝑓𝑓𝑓 𝑥2 > 𝑆𝑡ℎ while the neighboring cells are empty, 𝐿𝑛𝑛_𝑓𝑓𝑓𝑓𝑓_𝑥2 <
𝑇𝑡ℎ. The users’ position is manually introduced in the system (Manual mode) to avoid 
position errors. The suggested value of the power adaptation of each femtocell is 
showed in the top right figure of the GUI. Notice that, as the left window illustrates, 
the PRX values (per user) provided by this method are quite similar in time because 
they are static users and PRX is calculated based on HPLM database. 

 

 

Figure 5.38: VM method. 



 
Indoor mobility load balancing techniques 155 

The new configuration is set on the femtocells through a configuration file to 
update femtocells transmission power. After that, the femtocells network is monitored 
again to validate the modifications.  

As expected, the blue (left icon in Figure 5.36) phone hands over to Femto_x4, 
whereas the other two stay on the same serving cell (Femto_x2). After this, the Self-
Optimization window does not depict any data because the network is balanced and 
the algorithm is not triggered (until an overloaded situation appears again). 

Subsequently, the described real-time indoor-positioning system in subsection 
5.7.1.4 supplied online users’ positions to the SON algorithms. The VM method 
(automatic mode) under the inaccuracy of the positioning system proposes similar 
femtocell transmission power (estimated power variation) to the use case of accurate 
positions (see Table 5.15). Once these new transmission powers are tuned in femtocells, 
users hand over and network is balanced. This follows the expected behavior discussed 
in subsection 5.6.2.2.3 as the accuracy of the indoor positioning system is below 5 m 
(use case: maximum 4 active users per femtocell). 

 
Table 5.15: VM method performance. 

 
VM method 

(Manual mode) 
VM method 

(Automatic mode) 
 δPtx Users δPtx Users 

Femto_x1 0 0 0 0 
Femto_x2 -9.0 2 -8.8 2 
Femto_x3 0 0 0 0 
Femto_x4 7.5 1 7.3 1 

 

MR method 

The MR method is evaluated in Figure 5.39 where the same problematic situation 
is deployed. In this case, as previously described, the PRX values fluctuate over time 
due to the propagation channel conditions as the left figure illustrates (neighboring 
cells present a similar behavior). In consequence, the algorithm proposes a different 
solution in time, making three femtocells (Femto_x1, Femto_x3 and Femto_x4) to 
fight to get the blue (left icon in Figure 5.36) or red (right icon in Figure 5.36) phone. 
The instability of the PRX values from the neighboring cells generates this situation: 
either the strongest PRX value from neighboring cells is received by the blue phone 
(from Femto_x3/x4) or from the red phone (Femto_x1). That means, there is not a 
unique solution for that situation in time, therefore the number of handovers could be 
increased (as simulations depict in subsection 5.6.2.2.2). 
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Figure 5.39: MR method. 

 

5.7.3 Additional performance metrics 

Additional performance metrics were measured to ensure the information exchange 
is successfully transmitted from the network and Positioning System to the SON 
system and no information is missing. The Positioning System must estimate the users’ 
position in milliseconds and the SON system must process the received information in 
short periods to be able to solve temporal congestion issues.  

• Successful transmission rate: Thanks to TCP, the successful transmission 
rate in the global system is 100%. However, this protocol increases the 
communication headers. An analysis to estimate the signaling overhead is 
performed below. 

• Signaling overhead: The SON System designed in this prototype receives 
messages from the Positioning System and from each user in the cellular 
network. Messages from both sources are JSON messages and text is ASCII 
encoded. It means, the text sizes are around 440 bytes (an example JSON 
message was depicted in Figure 5.33) plus the communication headers 
(TCP+IP=40 bytes) for information about a user’s position, while the text sizes 
are around 350 bytes plus the communication headers for information from a 
user and femtocell (additional femtocell information increases the text 240 
bytes) in the cellular network. Therefore, in the last scenario where four users 
are camped, they receive information from four femtocells and it is forwarded to 
the SON System every five seconds, the transmission rate supported by this 
system must be around 10 kbps (3 kbps from the LS and 7 kbps from users). 

Besides, the signaling overhead could be significantly reduced as SON 
mechanisms do not have to be triggering all the time or in very short periods 
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(e.g., every 5 s). They could be triggered once an indicator reaches a threshold 
which means something is getting wrong (e.g., access failure rate is over 0.5%). 

• Delay: Although the TCP protocol would ensure a hundred per cent of 
successful transmission rate and communication infrastructures (optical-fiber, 
DSL, etc.) would support enough transmission speed, the information could be 
received with a delay. The time to estimate the users’ position is around 300 ms 
per user plus a few milliseconds to transmit the information. Meanwhile, the 
time to gather cellular information and send it to the SON System is also 
around a few milliseconds. Therefore, the most critical step would be the 
calculation of the users’ position, being the delay 1.2 s in the described study. 
Based on this, information is supplied to the SON System with a minimum 
delay of two seconds. This prototype is set to trigger SON algorithms every five 
seconds in order to ensure the required inputs have been received in time (three 
seconds margin). In case information from any of the users is missing, the SON 
System is not triggered in that period. 

• Processing time of the SON system: The time to process all that 
information would depend on the number of users and femtocells in the 
scenario. The “Big O notation” would describe the limiting behavior of these 
algorithms. The number of users is limited by the femtocell but the number of 
femtocells would depend on the deployment. The complexity of the PLUS and 
UD methods would be related to 𝑂(𝑛), where 𝑛 is the number of femtocells 
deployed. Conversely, the complexity of the VM and MR methods would be 
related to 𝑂(𝑘 ∙ 𝑛), where 𝑘 is the number of iterations the algorithm need to 
converge. Normally, 𝑘 < 𝑛 because the algorithm quickly converges to the 
optimal value of the femtocells transmission power to balance the network load 
and very few femtocells would be overloaded each iteration. 

• Automatic values of 𝑺𝒕𝒕 and 𝑻𝒕𝒕 (𝑸𝒕𝒕): Each hour or day the algorithm 
would change one of these thresholds in steps of X units and the new network 
performance would be analyzed. According to this, the reference thresholds 
would be periodically changed to find if any of the new proposed thresholds 
around the reference thresholds would minimize the UDR. That process could 
take several iterations to reach the optimal solution. 

In case the context-aware SON system might degrade the network performance 
(due to delays of context data, missing information, etc.), it will be immediately 
detected and the context-aware SON algorithms will be temporarily disabled and the 
network would be managed by classical SON mechanisms (e.g., PLUS method). 
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5.8 Conclusions 

Novel and low computational cost MLB methods have been proposed and analyzed 
for temporary congested indoor femtocell scenarios. 

Initially, the importance of analyzing classical input indicators (e.g., the available 
radio resources) was studied, as well as the specific characteristics of femtocells (e.g., 
the maximum capability of users’ connections) for MLB use case in temporal 
overloaded situations. Some algorithms were designed but, the PLUS method that 
integrates radio resources and femtocells capacity information, has been proved as the 
best combination to build a consistent and reliable MLB mechanisms for femtocell 
networks. 

Nevertheless, those algorithms did not consider the context information which 
could improve the algorithm performance. As a consequence, two new context-aware 
MLB systems were designed. Firstly, the UD method introduced the users’ position 
and the PRX information measured from the network to support the MLB 
mechanisms. It made use of the geometrical distances between the users to estimate 
the new transmission power of femtocells. This method outperformed other MLB 
mechanisms. However, those geometrical distances could not be always the optimal 
solution to focus the optimization efforts for calculating that new transmission power 
due to the influence of the wall, obstacles, etc. For example, two close users could 
receive quite different PRX if there is a wall in the middle but they are included in the 
same group. A novel MLB system was designed to outperform the shortcomings of the 
previous UD method. The proposed method prioritized users making phone calls over 
any other service following that operators’ policy. The VM method proposed the 
HPLM database to estimate the PRX values and to calculate the estimated 
transmission power. 

The accuracy of these location-aware algorithms depends on the indoor-positioning 
system where the online user position could be provided with errors (up to several 
meters). In consequence, the system performance would decrease depending on the 
position error. Conversely, the MR method outperforms the previous methods when 
the user position error starts to be over some meters. The position error threshold to 
choose the VM/UD methods or the MR method depends on the femtocells capacities. 

Finally, an ES system was coordinated to homogenously balance users in the 
network to increase its capacity and coverage, at the same time maintaining a high 
global quality in voice connections and reducing the power consumption of the 
network. The coordination of these methods is mandatory to avoid conflicts in self-
optimization mechanisms. 
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Chapter 6 

6 Conclusions 
 

 

This chapter summarizes the main contributions of this PhD thesis, the future 
work and the list of publications. 

The structure of this chapter is as follows: Section 6.1 details the main 
contributions of this thesis. Section 6.2 proposes some future work. Finally, Section 6.3 
lists the publications which support this thesis and other publications of the author. 

 

6.1 Contributions 

This work is focused on the MLB use case defined by the 3GPP, in commercial and 
corporate femtocell networks. However, to accomplish the input data for the proposed 
context-aware SON mechanisms, some previous work had to be carried out. In this 
sense, the main contributions of this PhD thesis are detailed below: 

• The description of a context-aware SON framework and the design of an OAM 
architecture to integrate context data from intelligent devices into SON 
systems. This framework presented the main context sources, external to the 
mobile operator infrastructure, to collect valuable information about what is 
happening in a certain place at a specific moment or even about what the 
situation will be in the following days. Moreover, the periodicity of collecting 
that context data was considered, as each context source provides the 
information at specific time intervals. Based on this, that context data was 
integrated into the proposed OAM architecture together with cellular network 
performance parameters (alarms, counters, etc.). This OAM architecture could 
be either part of the operators’ OAM architecture or part of a third party 
service provider which proposes the new configuration parameters to the 
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operators’ OAM architecture based on its own SON algorithms. Thanks to this 
proposal, SON mechanisms will analyze useful external cellular network 
information. Hence, new context-aware SON algorithms could be developed to 
improve the cellular network performance. 

• The development of RFID-based indoor positioning techniques for the location 
of multi-antenna RFID devices and the enhancement of these systems with the 
integration of cellular technology information. Although the literature described 
many indoor positioning systems and most of them are studied under specific 
characteristics and scenarios, this new approach has been focused on more 
critical environments for RF signals such as halls and corridors. Several 
techniques and methods were analyzed based on two-antenna readers to finally 
select the one with the highest accuracy. Besides, a trade-off between the 
number of antennas and the number of active tags was carried out, showing 
that two-antenna readers can provide equivalent or even better accuracy with 
half number of active tags deployed in the infrastructure compared to a single-
antenna reader. That would reduce the expenditures of indoor positioning 
system almost by half. Moreover, the radio signal from the cellular technologies 
was collected and processed to improve the accuracy of the RFID-based indoor 
positioning system. The accuracy of the global indoor positioning system is 
enhanced with low investment as the cellular infrastructure is already deployed 
and it is managed by the cellular operators.  

• The design of novel MLB algorithms based on incoming context information to 
solve temporary congestion problems at commercial and corporate femtocell 
networks. The special characteristics of femtocells (restriction in the number of 
users per femtocell, unplanned deployments, short-range, etc.), indoor 
environments characteristics (multi-path reflections, occasional events, etc.) or 
users’ indoor mobility pattern (increase number of handovers, etc.) make 
classical MLB mechanisms prone to failures or to propose non-optimal network 
configurations. Hence, the proposed SON algorithms overcome those classical 
methods for these incoming femtocell networks. Additionally, classical SON 
systems analyzed cellular network performance parameters (alarms, counters, 
etc.) to propose the optimal configuration parameters and improve or solve 
network issues. However, the expansion of smart-devices, systems and 
applications provide valuable and real-time additional information from external 
sources to the mobile operator infrastructure. The proposed context-aware SON 
framework and OAM architecture make possible the integration of that context 
data into SON systems. Focusing on indoor positioning systems as context 
sources, some MLB mechanisms based on users’ position were designed and 
evaluated in both, real simulated and field trial environments, where users’ 
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satisfaction was improved compared to classical MLB methods while the 
operators’ expenses are the same.  

• The coordination of context-aware self-optimization mechanisms. As MLB 
mechanisms are femtocell transmission power related, the modification of the 
parameters is highly susceptible to parametric dependencies with other SON 
algorithms. A novel energy-saving method based on fuzzy logic controllers and 
users’ position was designed to analyze that situation. Their coordination is 
mandatory to ensure the ES mechanism does not switch off a femtocell which is 
the target femtocell of the MLB method to offload an overloaded femtocell.  

 

6.2 Future work 

This PhD thesis is focused on the integration of context-awareness in femtocell self-
optimization mechanisms to solve temporary congestion issues in commercial and 
corporate femtocell networks. The author proposes some future lines of research under 
this field: 

• This PhD thesis made use of users’ position to design and develop novel self-
optimization mechanisms for indoor femtocell deployments. Conversely, the 
massive expansion of smart-devices makes possible the use of additional kind of 
context information into SON systems such as mobility pattern, moving speed, 
location and date of social events, rush hours, etc. The integration and the 
analysis of these data in novel SON algorithm would further optimize network 
parameters to reach the optimal status under each network situation. It would 
also help the operator to prevent future network failures.  

• This PhD thesis presented a simple coordination of two self-optimization use 
cases. The coordination of SON mechanisms is currently a challenge for network 
engineers. Several SON mechanisms are currently working on parallel and 
triggered to optimize or heal the cellular network. However, these SON 
mechanisms are categorized and listed by priority based on the engineers’ 
experience. Once the SON methods are triggered, the one on the top of the list 
per category which proposes to tune a network configuration parameter is 
selected, the proposal of any other SON method is discarded. As a consequence, 
a framework is required to coordinate the SON mechanisms to find the best 
network configuration parameters according to the operator’s policies. 

• The indoor positioning strategies are a hot topic in current researches. The 
accuracy of low cost systems is still high, few meters. That position error could 
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be good enough for some applications but it would be useless for some other 
applications. This PhD thesis proposes to increase the number of antennas of 
the RFID reader as it would be much cheaper than deploying further number of 
active tags. Additionally, other RF technologies from already deployed 
infrastructures such as LTE, could be integrated in these systems as a low cost 
solution to improve the accuracy. 

• Finally, the field trial evaluation of the proposed context-aware MLB 
mechanisms was carried out under very restricted conditions of the number of 
terminals and femtocells. Hence, the studied coverage area was small. Moreover, 
there were some constraints by the network operator to set the network 
configuration parameters which restricted the accessibility to tune these 
parameters to occasional days. As a consequence, the coordinated SON methods 
could not be assessed in a real deployment. Hence, further field trials in 
environments such as malls or even airports, could be deployed to evaluate the 
proposed context-aware SON methods and their coordination. In the same 
context, the proposed multi-antenna RFID-based indoor positioning system 
could be implemented in other scenarios to measure the accuracy of that system 
under other conditions. 
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Appendix A 

A Technology characteristics 
 

 

The general characteristics and theoretical models of RFID and cellular (GSM and 
UMTS) technologies are summarily described in indoor scenarios.  

 

A.1 RFID technology 

There are two different types of RFID technology systems: inductive and radiative, 
operating in a large range of frequencies, from 125 kHz to 5.8 GHz (Figure A.1), but 
most applications use LF, HF and UHF bands.  

Focusing on UHF band, communication of UHF systems are up to several dozens of 
meters in free space conditions. In order to achieve longer ranges, transponders need a 
battery to provide power supply to the chip. 

 

 

Figure A.1: RFID frequency bands. 

 
The power received for a line-of-sight (LoS) and multiple single reflections 

environment can be modeled as [117]: 
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where 𝜆 is the wavelength, 𝑑 is the length of the direct ray path, 𝛤𝑛 is the reflection 
coefficient of the n-th reflecting object, 𝑑𝑛 is the length of the n-th reflected ray path 
and 𝑁 is the total number of reflections. 

The estimation of the multiple reflections in a scenario is computing consuming and 
needs an accurate description of the environment. In practice, the most commonly 
channel model used for indoor scenarios is the log-normal shadowing model [118]. It 
allows to predict the path loss by a statistical analysis of measurements in a given 
physical surrounding: 

 

𝑃𝑃(𝑑) = 𝑃𝑃(𝑑0) + 10𝜂 𝑙𝑙𝑙10
𝑑
𝑑0

+ 𝛸𝜎 , (A.2) 

 
where 𝑃𝑃(𝑑0) is the path loss for a reference distance 𝑑0, 𝜂 is the path loss exponent 
and 𝛸𝜎 is a Gaussian random variable with zero mean and a standard deviation 𝜎. 

 

A.2 Cellular technology 

GSM is a standard that describes protocols for 2G mobile networks. GSM systems 
usually work in the 900/1800 MHz band, whereas in the 3G, UMTS is located at the 
900/2100 MHz band (in Europe). Furthermore, there is also an important difference in 
terms of radio propagation: the carrier spacing is 200 kHz in GSM, whereas it is 
increased to 5 MHz in UMTS. For this reason, UMTS system is more vulnerable to 
frequency selective fading than GSM systems. Particularly, the wireless wave will be 
diffracted, scattered, and absorbed by the terrain, trees, building, vehicles, people, etc., 
that encompasses the propagation environment as it traverses the path from a 
transmitter to a receiver. The presence of obstacles along the path causes higher signal 
attenuation than it would suffer under free space conditions. 

Both GSM and UMTS technologies are widely implemented all over the world. 
Even if GSM is a legacy technology in terms of telecommunications, it is by far the 
most extended technology in terms of coverage and redundancy of macrocell stations, 
where also the lower transmission frequencies allow a better reception indoors. 

In order to obtain a glance of the cellular signal channel characteristics indoors, 
COST231-Hata model [119] which is valid from 150 MHz to 2 GHz and WINNER II 
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model [112] which is valid from 2 GHz to 6 GHz can be adopted as two of the most 
widely propagation models for cellular communication studies. 

COST231-Hata model defines the path loss in different urban and suburban areas 
as well as in in-building penetration. This model uses a LoS path loss with an indoor 
component: 

 
𝑃𝑃(𝑑) = 32.4 + 20𝑙𝑙𝑙𝑓𝐺𝐺𝐺 + 20𝑙𝑙𝑙(𝑑𝑜𝑜𝑜 + 𝑑𝑖𝑖) + 𝑃𝑃𝑖𝑖, (A.3) 

 
where 𝑓𝐺𝐺𝐺 is the frequency in GHz, 𝑑𝑜𝑜𝑜 is the outdoor path, 𝑑𝑖𝑖 is the indoor path 
and 𝑃𝑃𝑖𝑖 is defined as: 

 
𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑒 + 𝑃𝑃𝑔𝑔(1 − 𝑠𝑠𝑠𝑠)2 + 𝑚𝑚𝑚(𝛤1,𝛤2), (A.4) 

 
where 𝑃𝑃𝑒 is the normal incidence first wall penetration, 𝑃𝑃𝑔𝑔(1 − 𝑠𝑠𝑠𝑠)2 is the added 
loss due to angle of incidence 𝜃 which is usually measured over an average of empirical 
values of incidence and 𝑚𝑚𝑚(𝛤1,𝛤2) estimates loss within the building. 

WINNER II model defines different scenarios and their applicable path loss 
characteristics. For the case of macrocellular signal reaching in indoor environments 
the correspondent model is outdoor-indoor C4. The expression for this model path loss 
is: 

 
𝑃𝑃(𝑑) = 𝑃𝑃𝐶2(𝑑𝑜𝑜𝑜 + 𝑑𝑖𝑖) + 17.4 + 0.5𝑑𝑖𝑖 − 0.8ℎ𝑀𝑀, (A.5) 

 
where 𝑑𝑜𝑜𝑜 is the distance between the macrocellular station and the external wall of 
the indoor scenario, 𝑑𝑖𝑖 is the distance between the wall and the receiver indoors, 𝑃𝑃𝐶2 
represents the path loss for the model for urban macrocell outdoors C2, and ℎ𝑀𝑀 is the 
height of the terminal. For this model, the impact of 𝑑𝑖𝑖 in the factor 𝑃𝑃𝐶2(𝑑𝑜𝑜𝑜 + 𝑑𝑖𝑖) 
becomes usually negligible for the normal distance of dozens/hundreds of meters 
between the indoor building and the macrocell base station. This makes the evolution 
of the path loss in the indoor scenario mainly influenced by the term 0.5𝑑𝑖𝑖. 

Additionally the impact of the shadow fading can be also modeled for an indoor 
scenario as a log normal distribution with standard deviation of 8 dB. Finally, fast 
fading can be modeled as Rayleigh (in Non-Line of sight) and Ricean (in Line of sight 
situations) distributions. However, fast fading effects are mostly eliminated in the 
measurements provided by common monitored tools due to received power is averaged 
at Layer 1 and 3 [79] of the terminal protocol stack. This makes the shadowing the 
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main component for the difference of received power between positions of the scenario. 
Still, in order to categorize the characteristics of each position, shadowing effects 
cannot be calculated without very complex computations and an extremely detailed 
knowledge of the scenario is required. In addition, the path followed by the signal from 
the macrocellular base station to the terminal shall be known. 

 



 

171 
 

 

 

 

Appendix B 

BSignal assessment 
 

 

The signal assessment of RFID and cellular (GSM and UMTS) technologies based 
on their theoretical models (see Appendix A) and the measurement campaign are 
detailed in this appendix. 

 

B.1 Introduction 

The selected indoor scenario consists on a corridor 22.5 m long x 2 m width x 2.5 m 
height. For the assessment of the RFID and cellular signals, several samples were 
collected for each technology along the corridor. Three lines of measurements (called 
hereafter ‘left’, ‘middle’, ‘right’) were performed along it with a distance of 50 cm from 
each other where multiple samples have been gathered every meter for each position. 
This provides 63 positions (21 per line) in the whole corridor. Further details about 
the scenario, the equipment and the mobile platform are described in subsection 4.5.1 
“Trial set-up”. 

Both systems (RFID and cellular) acquire samples during five minutes per position. 
Regarding the RFID system, all tags are sampled every five seconds while the cellular 
signal (GSM and UMTS) were measured every second. These experiments were carried 
out in the morning of three days. In order to simplify the assessment, all 
measurements were taken with the same orientation. Notice that, assuming that the 
cellular terminals properly report the terminal orientation, the analysis of the signal 
and/or the calibration phase can be performed and stored for multiple orientations. 
Then, during the localization phase, data from training sets with different orientations 
would be selected and combined following common approaches for positioning.  
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In order to analyze the characteristics of radio signals received from each 
technology and to assess their applicability for indoor location, the following statistics 
have been studied: 

• Analysis of the measurements: referring to the range and distribution of signal 
values in terms of the received Cell ID (𝐼𝐼𝐼𝐼𝐼) and PRX (𝑃𝑃𝑃). From the point 
of view of the 𝑃𝑃𝑃, this distribution is characterized by the mean 𝜇𝑃𝑃𝑃

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 and 

the standard deviation 𝜎𝑃𝑃𝑃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 of all samples gathered in the assessment. 

From the point of the 𝐼𝐼𝐼𝐼𝐼, the number of identifiers 𝑁𝐼𝐼𝐼𝐼𝐼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is measured. 

• Analysis per position: about the variability of the gathered signals received in 
each fixed position. It gives an idea of the stability of the signal and therefore 
the achievable accuracy of the positioning system. For this perspective, different 
statistics have been defined: 

- Static standard deviation, 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦), and mean,  𝜇𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥, 𝑦), of Prx (in 
dB): static standard deviation measures the level and stability of the power 
measurements in a specific position (𝑥,𝑦) as: 

𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦) = �
1
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where 𝑀𝑥,𝑦 is the set of 𝑃𝑃𝑃 samples 𝑚𝑖 measured in the (𝑥, 𝑦) position and 
 𝜇𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥, 𝑦) is the average of the 𝑀𝑥,𝑦 samples.  

- Adjacent standard deviation, 𝜎𝑃𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥,𝑦), of 𝑃𝑃𝑃 (in dB): it is calculated 

as the deviation of the set of the received power values in one position and 
its adjacent points in the assessment set as: 

𝜎𝑃𝑃𝑃
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where 𝑀𝑥,𝑦

𝑎𝑎𝑎 = {𝑀𝑥,𝑦 ∪ 𝑀𝑥+𝑥0,𝑦 ∪ 𝑀𝑥−𝑥0,𝑦 ∪ 𝑀𝑥−𝑥0,𝑦−𝑦0 … } is the set of 𝑃𝑃𝑃 
measurements used in the assessment, being {(𝑥 + 𝑥0, 𝑦), … } the adjacent 
positions (variations in the 𝑧 axis are not considered due to the fixed height 
of the target platform). 𝜇𝑃𝑃𝑃

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥,𝑦) is the mean of the 𝑀𝑥,𝑦
𝑎𝑎𝑎   samples. 

This provides an assessment on the discernibility of a position in respect to 
its neighbors in terms of 𝑃𝑃𝑃. 
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- Static number of IDSrx, 𝑁𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦): it refers to the number of serving cells 
or tags measured per point.  

- Adjacent ratio of common IDSrx, 𝜎𝐼𝐼𝐼𝐼𝐼
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥,𝑦): it indicates the number of 

different 𝐼𝐼𝐼𝐼𝐼 between one position and its adjacent ones. Such parameter 
measures the possibility of using the Cell ID to distinguish between 
positions. 

As support for characterization of the signal in real-world, their behavior is 
emulated by means of simulations for each technology (see equations in Appendix A): 

• RFID: An active tag is emulated on the left wall of the corridor in the position 
(0,1). For simplicity, the radio propagation model predicts the signal received in 
line of sight and multi path component formed predominately by a single 
reflected wave. The transmission power of the tag was set to -30 dBm. 

• UMTS and GSM: Three tri-sectorized macrocells have been deployed into a 
large scenario to cover the designed corridor for both technologies. They are 
placed 1 km far from the corridor. 

In the following subsections, the features of the different signals of the simulated 
scenario and the real prototype are analyzed and compared. 

 

B.2 RFID signal 

B.2.1 Analysis of the measurements 

For the simulated signals, the probability distribution function (PDF) of 𝑃𝑃𝑃 for a 
tag placed on coordinates (0,1) and per line of measurement, are illustrated in Figure 
B.1. For the middle line, it presents a value of 𝜎𝑃𝑃𝑃

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 6 dB. 

 

   

 (a) Left Line (b) Middle Line (c) Right Line 

Figure B.1: RFID simulations – Histograms. 



 
174  Appendix B 

Regarding the real campaign, the probability distribution function at each line 
along the corridor for a random RFID tag is represented in Figure B.2, which has been 
constructed aggregating 1260 measurements per line (21 positions x 60 
samples/position). In this case, the average power 𝜇𝑃𝑃𝑃

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 for this particular tag is 

around -60 dBm for all lines, but distribution is more symmetrical for the middle line. 
Here, the received power is between [-73, -43] dBm and a value of 𝜎𝑃𝑃𝑃

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 = 7.3 dB, 

which is consistent with the simulated results. In addition, all of the installed tags are 
received at some point of the scenario, making 𝑁𝐼𝐼𝐼𝐼𝐼

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 equal to 30. 

Finally, comparing both figures, quite similar distributions are observed between 
the simulation results and the measurement campaign.  

 

 

 (a) Left line (b) Middle line (c) Right line 

Figure B.2: RFID – Histograms. 
 

B.2.2 Analysis per position 

Figure B.3 shows the measurements gathered in the middle line of the corridor 
coming from two representative tags located at the beginning (a) and in the middle (b) 
of the corridor.  

 

 

(a) Tag 1: Beginning of the corridor (b) Tag 7: Middle of the corridor 

Figure B.3: RFID – RSSI. 
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Mean 𝑃𝑃𝑃 per position along the corridor  𝜇𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦) is ranged from -75 to -45 
dBm (green dots) for most positions, which complies with the path loss slope using the 
log-normal model in this corridor. 𝑃𝑃𝑃 deviation per position, 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥, 𝑦) is quite low. 
In average, along the corridor, the mean of the deviation values is less than 1 dB (blue 
line). Similar results are obtained for the rest of the 30 tags.  

 

B.3 GSM and UMTS signals 

B.3.1 Analysis of the measurements 

On the one hand, regarding the simulation results, the PDF of 𝑃𝑃𝑃 for each cellular 
technology is illustrated in Figure B.4 and Figure B.5 respectively. 𝑃𝑃𝑥 is considered 
independently of the serving cell (serving cell received power is used without 
examining its Cell ID).  

UMTS technology presents a value of 𝜎𝑃𝑃𝑃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 = 7.6 dB, showing a wide 
variability of the received power, thus, suggesting the presence of important shadowing 
effects in the corridor.  

 

   

 (a) Left line (b) Middle line (c) Right line 

Figure B.4: UMTS simulations – Histograms. 

 

   

 (a) Left line (b) Middle line (c) Right line 

Figure B.5: GSM simulations – Histograms. 
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Regarding GSM information from the simulation point of view, this has a value of 
𝜎𝑃𝑃𝑃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 = 11.2 dB, having a dominant power component in the three histograms 
which suggest the presence of a dominant direct line of sight between the macrocell 
and the corridor. In terms of variable range, both technologies cover around 40 dB 
from the minimum to the maximum measured values. 

On the other hand, the results of the real campaign are described. For that 
purpose, G-MoN [78] app automatically sniffs cellular signals and provides cellular 
information each second.  

Firstly, for the UMTS technology, the global statistical distribution of all 
measurements in the corridor is represented in Figure B.6, which has been calculated 
aggregating 6300 measurements per line (21 positions x 300 samples/position). Here, it 
can be observed how the measurements are mainly in the range of [-104, -88] dBm in 
every line, showing the wide variability in the values of the received power along the 
corridor, with a value of 𝜎𝑃𝑃𝑃

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 = 4.13 dB for the middle line. This could mean two 

different situations: either the received power suffers quick changes due to the fading 
or the signal is more or less stable around the same position but it changes a lot with 
the position. However, the dominant power component around -98 dBm suggests a 
stable signal in the corridor.   

 

 

 (a) Left line (b) Middle line (c) Right line 

Figure B.6: UMTS – Histograms. 

 

 

 (a) Left line (b) Middle line (c) Right line 

Figure B.7: GSM – Histograms. 
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Secondly, for the GSM technology, Figure B.7 illustrates the same information. In 
this case, the average received power is higher than for UMTS. The range width, 
mainly between [-90, -75] dBm, provides similar values to UMTS but the deviation is 
higher 𝜎𝑃𝑃𝑃

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 = 7.5 dB. This is consistent with the GSM band being located in 

lower frequencies (900 MHz) than UMTS (2100 MHz), which makes it less affected by 
attenuation and common obstacles in indoor environments. This would depend also on 
the location of the cellular base station, but in this case, and following common 
cellular telecommunications operators practices, both technologies share the same site, 
therefore, the same distance to the studied scenario. In these histograms, two main 
ranges of dominant power components are detected, which could mean that two 
serving cells are received in the corridor. 

The measurements show a narrower distribution than the simulated results due to 
the different shadowing conditions. However, the general relation between the 
characteristics of both technologies, with a higher deviation for GSM, is consistent 
with the simulated results.  

 

B.3.2 Analysis per position 

On the one hand, to analyze the signal stability per position from the point of view 
of the received power, its standard deviation and mean are calculated for all the 
measurements gathered in each different position.  

 

 

 (a) Left line (b) Middle line (c) Right line 

Figure B.8: UMTS – Received Signal Code Power (RSCP). 

 
Firstly, the UMTS study is shown in Figure B.8 for the statistics calculated with 

the samples gathered at each position of the three corridor lines followed in the 
campaign. The static standard deviation 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦) (blue circles) of the 
measurements for most points are lower than 2 dB and its average is lower than 1 dB 
along the corridor (blue line). That indicates a very strong stability of most received 
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power measurements for each position as a consequence of the average process 
performed by the app, which mitigates the fast-fading component of the propagation. 
Measurements in those positions with high standard deviation might suffer from the 
effect of handover or cell-reselection due to shadowing. At the same time, the variation 
of the mean received power (green dots) at each position is also shown in Figure B.8, 
providing an assessment of the possibilities for discrimination of the different positions 
along the corridor. 

Secondly, for GSM technology, Figure B.9 also shows high stability in each position 
of the corridor of the three lines, being 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥, 𝑦) = 0 dB except for some few 
positions in each line where its value is increased, sometimes up to 10 dB. Once the 
serving cell was analyzed in each position, it was observed that these big variations in 
the received power were caused by the handover/cell-reselection process. However, 
such behavior could easily be filtered based on the serving Cell ID information, 
providing still valuable information for those positions. 

 

 

 (a) Left line (b) Middle line (c) Right line 

Figure B.9: GSM – Received Signal Level (RxLev). 

 
On the other hand, from the point of view of the serving Cell ID, these are depicted 

in Figure B.10 where different icons identify each serving cell per position and line 
along the corridor. Figure B.10(a) shows how UMTS terminals are connected to a wide 
variety of cells in this scenario, which explains the variations in the signal received in 
one spot. Conversely, as Figure B.10(b) depicts, the GSM signal presents homogeneous 
serving Cell IDs in the corridor, except in the right side where the influence of several 
cells are presented. Such behaviors become convenient for localization purposes as it 
discriminates positions on the corridor. 

In conclusion, both cellular technologies have shown a very strong stability in 
terms of the received power at the same position, especially if the consistency in the 
serving Cell ID is taken into account, while it changes considerably along the corridor.  
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(a) UMTS technology 

 

(b) GSM technology 

Figure B.10: Serving cell identifier for UMTS and GSM technologies. 

 

B.4 Applicability of the results 

The characteristics of the analyzed technologies are now summarized. Table B.1 
shows the statistics for the signal complete distribution along the middle line of the 
corridor while Table B.2 shows the mean and median of the characteristics of 
variability obtained per position of the middle line. 

For the case of RFID technology, the results on 𝑃𝑃𝑃 corresponds to a tag placed on 
coordinates (0,1). In terms of 𝑃𝑃𝑃 variability per adjacent position it is observed how 
𝜎𝑃𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 values are consistently high (median 𝜎𝑃𝑃𝑃

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 = 3.2 dB), which makes it a 

good variable as input for the localization phase. However, the signal presents a certain 
degree of instability per position (median 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠

 = 0.5 dB), which may introduce 
inaccuracies during the real time localization phase. From the point of view of 𝐼𝐼𝐼𝐼𝐼, 
it is also observed that almost all tags are read in any position in the corridor. 
Therefore, the tag ID is not good enough to discriminate the real localization. As a 
consequence, each position is defined by the set of 30 RSSI fingerprints (each tag 
provides one). 
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Table B.1: Summary of signal variability. 

Technology 𝜇𝑃𝑃𝑃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (dBm) 𝜎𝑃𝑃𝑃
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (dB) 𝑁𝐼𝐼𝐼𝐼𝐼
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (number) 

RFID -58.2 7.3 30 
UMTS -97.1 4.1 7 
GSM -75.1 7.5 4 

 

In terms of cellular technology, the low values in 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦) (median ≤ 0.2 dB for 
both cellular technologies) indicate a very strong stability in the measured signal for 
each point, which is a positive feature for localization purposes allowing a stable 
support for the positioning calculations. In constrast, the high values in 𝜎𝑃𝑃𝑃

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥,𝑦), 
provide an idea of the capability of distinguishing between different spots based on the 
cellular received power. Here, GSM signals present the highest values.   

 
Table B.2: Summary of signal variability per position. 

Technology Statistic 𝜎𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠
 (dB) 

𝜎𝑃𝑃𝑃
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
(dB) 

𝑁𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 
(number) 

𝜎𝐼𝐼𝐼𝐼𝐼
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 
(ratio) 

RFID 
Mean 0.7 3.2 28.7 1.4 

Median 0.5 3.2 29 1.0 

UMTS 
Mean 0.5 2.6 1.7 0.7 

Median 0.2 2.5 1.0 0.7 

GSM 
Mean 0.6 6.0 1.1 0.3 

Median 0.0 6.6 1.0 0.0 
 

In terms of 𝐼𝐼𝐼𝐼𝐼, this means the variability of the received Cell IDs, 𝑁𝐼𝐼𝐼𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠(𝑥,𝑦) 
indicates that in general more cells are received per position in UMTS, while 
𝜎𝐼𝐼𝐼𝐼𝐼
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑥,𝑦) ratio represents the capability of distinguishing between adjacent 

positions based on the cell identifiers. Here, the latest indicates poor capabilities of 
GSM for the distinction based on Cell ID as most adjacent positions share the same 
Cell ID (median 𝜎𝐼𝐼𝐼𝐼𝐼

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 = 0). Conversely, in the case of UMTS each position has 

commonly a distinct pattern of receiving cells (median 𝜎𝐼𝐼𝐼𝐼𝐼
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 = 0.7 meaning that it 
is near one change of identifiers between positions). 

It has to be indicated that these general conditions, as in any opportunistic system, 
may vary for other places, as the distribution and composition of the macrocell 
environment may be different. Thus, for the use of the macrocell information an 
analysis of the particularities of each scenario has to be performed to assess the 
applicability of the scheme. 
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Appendix C 

C Fuzzy logic controllers 
 

 

A fuzzy logic controller (FLC) [120] is a non-parametric approach which provides 
an efficient and systematic solution for incorporating linguistic information from 
human experts. The use of rules and interactions make this system relatively easy to 
understand. 

A general fuzzy logic system consists of three stages as Figure C.1 illustrates. 
Firstly, a set of fuzzy membership functions transform crisp inputs into fuzzy input 
datasets. Secondly, the fuzzy outputs are calculated based on fuzzy input datasets and 
fuzzy rules (instead of Boolean logic). Finally, those outputs are converted back to 
crisp values. 

 

 

Figure C.1: Fuzzy inference system (Takagi-Sugeno). 

 
The literature offers different implementations of FLCs. This work is focused on 

the Takagi-Sugeno [111] approach due to its simplicity and computational efficiency. 
Next subsections describe further details about this approach.  
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C.1 System parameters and functions 

The system parameters and functions could be basically divided in four groups:  

• Linguistic variables: Instead of numerical values (continuous values), the 
system identifies each input and output variable as one or more linguistic 
variables (discrete variables), e.g., the base station transmission power 
adaptation, whose numerical values are ranged between [-10, 10] dB, is 
transformed into a dataset of linguistic terms (sentences or words) such as very 
negative, negative, zero, positive and very positive. An example is depicted in 
Figure C.2 where the available linguistic terms for two different inputs and an 
output can be found on the top of each function.  

 

 

 

 

Figure C.2: Example of membership functions. 

 
• Membership functions: A membership function is a curve that defines the 

degree of membership of a crisp input (between 0 and 1). Each membership 
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function 𝜇𝐴(𝑥) is labeled with a linguistic variable. These functions map and 
quantify crisp inputs (x) from the fuzzy set A into fuzzy input datasets (labeled 
with linguistic terms). Figure C.2 illustrates an example of real membership 
functions. The membership functions to transform fuzzy output datasets into 
crisp outputs are constant values (for Takagi-Sugeno approach). 

• Fuzzy rules: They are simple IF-THEN structures to control the fuzzy output 
datasets (e.g., transmission power adaptation as very negative, negative, etc.) 
based on the fuzzy input datasets (e.g., call blocking ratio as very high, high, 
etc.). A typical fuzzy rule statement, where two crisp inputs are introduced in 
the system, is similar to the following form:  

 
𝐼𝐼 𝑥 𝑖𝑖 𝑹 𝐴𝐴𝐴 𝑦 𝑖𝑖 𝑺 𝑇𝑇𝑇𝑇 𝒁, (C.1) 

 
where x and y are the crisp inputs, while R and S are the fuzzy input datasets 
defined in x and y, respectively according to their membership functions. Z is 
the fuzzy output dataset. Table C.1 shows an example of fuzzy rules. 

 
Table C.1: Example of fuzzy rules. 

 Loaddiff Operator ∆PTx δPTx 
 IF THEN 
1 Very Negative AND Very Negative Very Positive 
2 Very Negative AND Negative Very Positive 
3 Very Negative AND Zero Positive 
4 Negative AND Very Negative Very Positive 
5 Negative AND Negative Positive 
6 Negative AND Zero Positive 
7 Zero AND Very Negative Very Positive 
8 Zero AND Negative Positive 
9 Zero AND Zero Zero 
10 Positive AND - Negative 
11 Very Positive AND - Very Negative 

 

• Fuzzy set operations: A set of crisp inputs could provide several fuzzy 
outputs (Z) based on fuzzy rule statements (e.g., equation (C.1)). The 
combination of each rule is carried out using fuzzy set operations, like AND/OR 
operators, to get the degree of truth of each rule and finally the crisp output. 
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C.2 System processes 

The fuzzy logic system is divided into three internal processes as Figure C.1 shows. 
The aim of each module, as well as the flow of information between them, is detailed: 

1) Fuzzification process: The fuzzification process is the first step. This process 
converts crisp inputs into fuzzy input datasets based on the membership 
functions. These functions quantify the degree of membership of a crisp input x 
into a fuzzy dataset. 

For example, the 𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑 crisp input value (x = −0.45) of function 
𝜇𝑦(𝐿𝐿𝐿𝐿𝑑𝑑𝑑𝑑) in Figure C.2, could be labeled as 'Very Negative' (0.75) and 
'Negative' (0.25). These fuzzy input datasets are forwarded to the next step, the 
inference engine. 

2) Inference engine: The fuzzy datasets are evaluated at each rule 𝑟 to calculate 
the so-called degree of truth of that rule 𝜔𝑟. Fuzzy set operations accomplish 
this process. This work follows equation (C.1) to generate fuzzy rules and the 
product operator (PROD) is selected as the fuzzy set operation for AND 
intersection operator. 

Following this approach, the degree of truth of each rule 𝑟 for two fuzzy input 
datasets is defined as:  

 
𝜔𝑟 = 𝜇𝐴(𝑥) ∗ 𝜇𝐵(𝑦), (C.2) 

 
where ∗ is the product operator (PROD) and 𝜇𝐴(𝑥) and 𝜇𝐵(𝑦) are the values of 
the membership functions for fuzzy sets A and B and crisp inputs x and y, 
respectively. 

3) Defuzzification process: After the inference engine, the fuzzy outputs are 
computed to get the crisp output. For that purpose, there are different 
defuzzification methods [121]. This work is based on the center of gravity for 
singleton method, that is:  

 

𝑜𝑜𝑜𝑜𝑜𝑜 =
∑ 𝜔𝑟 𝑜𝑟𝑅
𝑟=1

∑ 𝜔𝑟𝑅
𝑟=1

, (C.3) 

 
where 𝜔𝑟 is the degree of truth of rule 𝑟,  𝑜𝑟 is the constant value of the output 
variable for the rule 𝑟, and R is the number of rules. 
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D Summary (Spanish) 
 

 

En este anexo se presenta un breve resumen en español sobre el trabajo realizado 
en esta tesis. En primer lugar, se hace una breve introducción a la situación actual de 
las redes móviles y los objetivos que se pretenden abordar. Posteriormente, se presenta 
el estado del arte, donde se describen los trabajos desarrollados dentro del ámbito de 
esta tesis. A continuación, se describen las tres líneas de investigación en las que se 
fundamenta este trabajo: integración de información de contexto en las redes móviles, 
estrategias de posicionamiento en interiores y técnicas de balance de carga con soporte 
de información de contexto en interiores. Finalmente, se detallan las contribuciones y 
líneas futuras de investigación, así como las publicaciones que avalan esta tesis. 

 

D.1 Introducción 

Las redes de telefonía móvil desplegadas en la actualidad precisan de la 
configuración manual de muchos de sus elementos de red. Los parámetros asociados a 
los diferentes procesos de la red tales como su planificación, configuración, integración 
o gestión son esenciales para un funcionamiento tanto eficiente como fiable en las 
operaciones de la red. Sin embargo, los costes asociados a la configuración de estos 
procesos son un punto a tener en cuenta por las operadoras de telefonía móvil. Los 
procesos semi-automáticos han sido el modo natural de actuar sobre este tipo de redes, 
requiriendo para ello, la intervención de ingenieros especializados en los diferentes 
campos asociados. Estos expertos, con la ayuda de herramientas de visualización y su 
gran conocimiento y experiencia en afrontar problemas similares, son capaces de actuar 
sobre la red permitiendo su mantenimiento y estabilidad. El inconveniente de este 
mecanismo reside en el consumo de tiempo requerido para hacer frente a estos cambios 
y la alta vulnerabilidad a cometer errores. Además, la variación manual de estos 
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parámetros introduce normalmente largos retrasos en la actualización de los mismos en 
respuesta a las constantes y rápidas variaciones que puedan presentarse en este tipo de 
redes, lo que genera que los parámetros de configuración aplicados no sean los óptimos. 
De este modo, por un lado conviene automatizar al máximo todos los procesos 
existentes en la red para ofrecer un mayor rendimiento a un menor coste y por otro 
lado, ser capaz de ofrecer la capacidad demandada por los usuarios evitando la caída 
de llamadas, desconexiones en el servicio, etc. Para hacer frente al primer caso, surge el 
concepto de redes auto-gestionadas, que permiten sacar el máximo partido a las redes 
de telefonía móviles desplegadas, disminuyendo al mismo tiempo los costes 
operacionales (OPEX) así como los costes de capital (CAPEX) y mejorando las 
prestaciones de la red ofreciendo al usuario final mejor calidad de experiencia (QoE). 
Para el segundo caso, nuevas tecnologías móviles (Long Term Evolution - LTE) están 
emergiendo para hacer frente a tal demanda de datos, nuevos tipos de estaciones base 
se están desplegando (small cells), etc. creando escenarios de redes de comunicaciones 
móviles heterogéneas y difíciles de gestionar. 

El concepto de redes auto-gestionadas proviene del término inglés Self-Organizing 
Networks (SON) y forma parte del nuevo paradigma definido por el 3GPP (3rd 
Generation Partnership Project) [2]. Su objetivo es automatizar las operaciones, la 
administración y el mantenimiento (OAM) de las infraestructuras de comunicaciones 
móviles a través de unos mecanismos avanzados que gestionen los procesos de manera 
inteligente y automática obteniendo los parámetros de configuración óptimos ante 
variaciones en las condiciones de la red. De este modo, se consigue mejorar su 
rendimiento así como reducir gastos OPEX y CAPEX [8] [9]. Este nuevo concepto se 
puede dividir principalmente en tres funcionalidades:  

• Auto-configuración: Se refiere a la capacidad que presenta la red para realizar 
una configuración de manera dinámica frente a la incorporación de nuevas 
estaciones base. Entre los parámetros que se pueden configurar se encuentran el 
identificador de celda, la frecuencia, la potencia de transmisión, etc. 

• Auto-optimización: Permite modificar automáticamente parámetros de la red 
móvil para ofrecer un mejor rendimiento de ésta y ofrecer a los usuarios finales 
un servicio de calidad. Entre estos parámetros a optimizar se incluyen el área de 
cobertura, capacidad de la red, traspasos, interferencias, etc. 

• Auto-curación: Detecta y diagnostica de forma automática los fallos y 
degradaciones del servicio de la red móvil e intenta resolver los problemas, 
mediante la identificación de la causa y procede a su recuperación. 

Centrándose en el campo de la auto-optimización [45], el 3GPP define y actualiza 
periódicamente en sus documentos (Releases) lo que se conoce como Casos de uso, una 
descripción de las actividades o de los pasos que deben realizarse para llevar a cabo 
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procesos de auto-optimización. De forma paralela, la alianza NGMN (Next Generation 
Mobile Networks) [3], una asociación de telecomunicaciones de operadores de telefonía 
móvil, proveedores, fabricantes y centros de investigación, han trabajado en la 
definición de unos casos de uso análogos: Coverage and Capacity Optimisation, Energy 
Savings, Mobility Load Balancing, Mobility Robustness Optimization, etc. 

Por otro lado, el amplio despliegue de nuevas redes de comunicaciones móviles 
(LTE.) sobre las ya existentes como son GSM, UMTS, HSPA, WiFi, WiMax, etc. para 
hacer frente al gran incremento de demanda de datos en las redes actuales, están 
generando un entorno de redes celulares heterogéneas (HCNs) compuestas por varias 
tecnologías de acceso radio (RAT) y diferentes frecuencias. Los terminales deben ser 
capaces de saltar de tecnología automáticamente y de forma transparente al usuario 
para poder hacer un uso más eficiente de los recursos disponibles en la red y así evitar 
la saturación de las tecnologías. En este contexto, hay que añadir la reciente inclusión 
en las redes de telefonía móvil de estaciones base de menor potencia de transmisión, 
también conocidas como small cells. Las small cells son nodos de acceso al medio cuyo 
rango de cobertura varía en función del dispositivo: microceldas, entorno a uno o dos 
kilómetros, picoceldas, alrededor de centenas de metros y femtoceldas, con un alcance 
de decenas de metros. Estos dispositivos coexisten con las actuales redes inalámbricas 
generando entornos de redes heterogéneas. 

Además, el 80% del tráfico móvil se consume en interiores [10]. Por tanto, gracias a 
estos nuevos nodos, especialmente las femtoceldas [122], el tráfico gestionado por las 
macroceldas se puede derivar en estos dispositivos y así liberar recursos al mismo 
tiempo que se ofrece una mejora en la calidad del servicio al usuario final y capacidad 
de la red en entornos de interior. Sin embargo, el despliegue de este tipo de estaciones 
base pueden generar degradaciones en el rendimiento de la red o incluso en la calidad 
ofrecida al usuario final si la red no se gestiona correctamente, por ello, el concepto 
SON vuelve a jugar un papel importante para este tipo de escenarios. 

Los mecanismos SON hacen uso de parámetros, indicadores, etc. de la red del 
operador para, en función de dichos valores, aplicar una nueva configuración de 
parámetros en la red que mejore el servicio final. Sin embargo, existe información muy 
valiosa externa a la red del operador y que pueden permitir la mejora de estos 
mecanismos. La información de contexto o context-awareness, es un concepto 
emergente que cada vez tiene más influencia en las diferentes disciplinas debido a la 
gran expansión de dispositivos electrónicos en todo el mundo y su permanente 
conectividad a Internet. Los datos obtenidos por las diversas fuentes proporcionan 
información de contexto, es decir, parámetros sobre el estado actual de personas, 
lugares, objetos o dispositivos en un determinado entorno que procesados de la manera 
adecuada pueden ofrecer grandes ventajas a los mecanismos SON. 



 
188  Appendix D 

Finalmente, para la integración de todos estos conceptos, se precisa del diseño de 
una arquitectura que sea capaz de gestionar y obtener toda la información necesaria 
desde las distintas fuentes de contexto y proporcionársela a los mecanismos SON para 
poder actuar con la mayor brevedad sobre los elementos de red en entornos de interior. 
De este modo, se obtiene una red robusta y dinámica frente a cambios bruscos, 
manteniendo unos valores aceptables por las políticas del operador y ofreciendo al 
usuario final una buena calidad de servicio. 

 

D.1.1 Objetivos 

El principal objetivo de esta tesis es el desarrollo de nuevos algoritmos de balance 
de carga en entornos de small cells, más concretamente en entornos de femtoceldas. 
Estos mecanismos de balance de carga permitirán rápidas y eficientes adaptaciones de 
los parámetros de configuración de la red de femtoceldas en entornos comerciales y 
corporativos ante cambios temporales y espaciales que conlleven a la congestión o 
sobrecarga de la femtocelda, y por tanto, la degradación de su rendimiento o la calidad 
del servicio al usuario final. Para ello, los métodos se apoyarán en la disponibilidad de 
información de contexto, adicional a la proporcionada por el operador de la red móvil.  

 Como posible información de contexto, cabe destacar la localización de los 
usuarios en interior. Por tanto, se desarrollarán técnicas de posicionamiento en 
interiores basadas en la tecnología RFID y soportadas por la infraestructura de la red 
del operador, permitiendo desplegar un sistema de bajo coste. 

 Para llevar a cabo la integración entre ambos tipos de sistemas, es necesaria una 
modificación de la actual arquitectura de gestión con el fin de poder disponer de la 
información de contexto en los diferentes elementos de red, además de la propia 
información de la red del operador. Por ello, se aborda el diseño de una arquitectura de 
gestión para afrontar la integración de ambos sistemas. 

 

D.2 Estado del arte 

El concepto de SON se ha aplicado a lo largo de muchos años en diversas 
disciplinas y ciencias. Sin embargo, su integración en las redes de telefonía móvil es un 
hecho reciente [2] [8] [9] e impuesto por la tecnología LTE. El beneficio de la auto-
gestión de redes en tecnologías previas se ha demostrado en gran cantidad de trabajos. 
Algunos de estos trabajos han sido la base para la adaptación y el desarrollo de nuevos 
mecanismos en la tecnología LTE [12] [13] [14] [85] [86] [87] [88] [89] [90]. 
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Una de las funcionalidades de SON es self-optimization, un campo donde se han 
llevado a cabo numerosos estudios. Más concretamente, muchos de estos estudios se 
centran en un caso de uso determinado: Mobility Load Balancing (MLB) en entornos 
macrocelulares o de small cells (nodos de baja potencia con cobertura de pocos 
kilómetros) e incluso femtoceldas. El objetivo de estas técnicas consiste en mover 
tráfico de una celda saturada a otra celda vecina con suficientes recursos. En la 
literatura se pueden encontrar diversos estudios y proyectos sobre técnicas de auto-
optimización de balance de carga, tanto en redes de interior como de exterior y entre 
diferentes tecnologías [4] [5] [6] [15] [16] [17] [91] [92] [93] [94] [95].  

Por otro lado, la expansión de dispositivos electrónicos ha dado lugar a un creciente 
interés en el concepto de context-awareness. Esta información de contexto, junto con 
los actuales indicadores de red (alarmas, contadores, KPIs, etc.), permite mejorar el 
rendimiento de las funciones SON. La posición del usuario es un tipo de información de 
contexto y una de las más utilizadas por las técnicas SON. Concretamente en entornos 
de interior, se numeran diversos trabajos [98] [99] [100]. En cuanto al caso de MLB, 
alguno de los trabajos presentados en la literatura son los siguientes [14] [18] [94].  

Referente a los sistemas de posicionamiento en interiores, existen numerosos 
sistemas, tecnologías y precisiones. Existe una relación directa en cuanto a la precisión 
del sistema y los costes. Entre los sistemas de bajo coste más utilizados, se encuentran 
los sistemas basados en la tecnología RFID, ofreciendo errores de posicionamiento de 
pocos metros [52] [53] [54]. Sin embargo, el uso de varias antenas en el receptor 
permite mejorar la precisión de localización, al mismo tiempo que reducir el coste del 
sistema [55] [56]. Por otro lado, el uso adicional de otras tecnologías mejora la precisión 
de estos sistemas [63] [64] [69]. Dentro de este concepto, las tecnologías celulares ya 
desplegadas y cuya gestión es independiente del sistema de posicionamiento, permiten 
reducir costes a la vez que reduce el error de localización del sistema [63]. 

Por último, es necesario disponer de una arquitectura para poder integrar la 
información de contexto dentro de las redes SON. Trabajos como [39] [40] proponen la 
integración de este tipo de información en las capas de gestión de algunos sistemas 
pero no hace referencia a redes móviles.  

 

D.3 Información de contexto y métodos SON 

En entornos de interior, las condiciones de la red pueden cambiar de forma 
continua dependiendo de la distribución de los usuarios, los elementos del entorno, la 
propagación de la señal, etc., degradando las condiciones o el servicio del usuario final. 
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Por ello, es necesaria la aplicación de unos mecanismos que permitan de forma eficiente 
y rápida la adaptación de la red móvil frente a estos acontecimientos impredecibles. 

Los mecanismos SON implementados en las redes de los operadores de telefonía 
móvil suelen utilizar parámetros de entrada provenientes de su propia red tales como 
contadores, alarmas, KPIs, etc. Sin embargo, la adaptación automática de aplicaciones, 
sistemas y dispositivos, permite acceder a información de contexto proporcionando 
datos muy valiosos no incluidos hasta ahora (en su totalidad) en los mecanismos SON. 
Por este motivo, se propone utilizar esta información adicional sobre el estado de un 
lugar, una persona o incluso dispositivos, como parámetros de entrada en el desarrollo 
de los algoritmos SON. De este modo, ayudan a incrementar el rendimiento y la 
capacidad de la red y mejorar la calidad de servicio. 

Una de las ventajas añadida a este tipo de información frente a la información 
monitorizada por la propia red de telefonía móvil es, por ejemplo, el tiempo de 
adquisición de la información y posteriormente su entrega a los sistemas 
correspondientes. En este aspecto, la información de contexto suele estar disponible 
con un retraso muy inferior a la generada por la red del operador, permitiendo que los 
mecanismos SON puedan adaptar los parámetros de configuración de la red 
prácticamente de inmediato. En el operador, la periodicidad en la monitorización de los 
indicadores de red en una arquitectura OAM centralizada suele ser de horas o incluso 
días, dificultando una rápida adaptación de la red. Por el contrario, con la llegada de 
la tecnología LTE, las arquitecturas OAM son distribuidas permitiendo reducir y 
solventar el problema del tiempo. Sin embargo, estos datos monitorizados por la red 
pueden ser valiosos pero insuficientes para un funcionamiento óptimo. Otro de los 
beneficios, está relacionado con la capacidad de predicción. La red puede estar 
preparada para afrontar una situación problemática, por ejemplo, un evento social el 
cual degradaría el rendimiento de la red debido a la gran concentración de usuarios en 
la misma celda. 

Esta diversidad de información puede ser adquirida desde diferentes tipos de 
fuentes y en diferentes intervalos de tiempo. Para ello, se ha definido un entorno con 
las siguientes fuentes de contexto: dispositivos personales, sistemas de localización, 
redes sociales, imágenes/videos, operario y otras fuentes. Dentro de la periodicidad 
para disponer de la información de estas fuentes, se han definido varios intervalos: una 
hora, treinta minutos, quince minutos, cinco minutos y menos de un minuto. 

Para poder integrar dicha información en la red del operador, se ha diseñado una 
nueva arquitectura de gestión de la red móvil, compatible con la arquitectura OAM 
definida por el 3GPP. Gracias a esta arquitectura, los mecanismos SON podrán actuar 
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con mayor frecuencia y analizando más datos del entorno donde está desplegada la red 
que hasta ahora eran inaccesibles. 

Para validar el entorno propuesto y la nueva arquitectura de red, se ha 
implementado un mecanismo de balance de carga, el cual ha analizado diferentes 
indicadores de la red móvil, así como la posición de los usuarios. Los resultados 
obtenidos han demostrado que utilizar información complementaria a la proporcionada 
por la red del operador es muy importante para ajustar los parámetros de 
configuración frente a situaciones dinámicas. Además, la ejecución de estos mecanismos 
en periodos de tiempo más cortos, permite a la red actualizar parámetros, para evitar 
congestiones de tráfico en una determinada celda. 

Como conclusión, este capítulo ha presentado un marco que integra la información 
de contexto dentro de los mecanismos SON en las redes de telefonía móvil. La 
ejecución de mecanismos SON en tiempo real permite ofrecer grandes mejoras a la red 
del operador, tanto desde el punto de vista de su rendimiento como de la satisfacción 
del usuario final. 

 

D.4 Estrategias de posicionamiento en interiores 

Existe gran diversidad de sistemas de posicionamiento en interiores. Entre los más 
habituales, son aquellos que analizan el nivel de señal recibida, sobre todo para 
entornos con múltiples reflexiones como los pasillos. Centrándose en este tipo de 
escenarios, se ha propuesto un sistema RFID con etiquetas activas (transmisores) para 
el diseño de un sistema de posicionamiento en interiores. 

Inicialmente, se ha estudiado un sistema donde se proponen diferentes técnicas para 
estimar la posición del usuario. Posteriormente, se ha analizado el uso de dos antenas 
en el receptor para ver los beneficios de adquirir el doble de información a un coste 
mínimo. Para ello, se han propuesto diferentes métodos y fases para la integración de 
esta información en el sistema anteriormente descrito. Finalmente, se ha utilizado la 
información de las redes de telefonía móvil como una fuente de bajo coste para mejorar 
el rendimiento del sistema. Este tipo de infraestructuras están ya implementadas y su 
mantenimiento es parte del operador móvil. 

La evaluación de los sistemas propuestos se ha llevado a cabo en un pasillo y los 
resultados muestran mejoras frente al estado del arte. Por un lado, se ha seleccionado 
la técnica que ofrece un menor error de posicionamiento. Por otro lado, se han 
analizado los diferentes métodos de integración de datos provenientes de dos antenas, 
mostrando una reducción del error de posicionamiento del 20%. Además, se ha 
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comprobado el rendimiento del sistema cuando sólo se utiliza una antena y cuando se 
usan dos antenas y la mitad de etiquetas, observándose resultados prometedores. No se 
ha conseguido el mismo error de posicionamiento pero de media, se consiguen 
resultados similares, permitiendo reducir el número de etiquetas del sistema y por 
tanto, los costes del sistema. Por último, se ha diseñado el mismo sistema con 
información proveniente de dos redes celulares, GSM y UMTS. El rendimiento del 
sistema en cuanto a los errores de localización son muy grandes, como es de esperar. 
Sin embargo, la integración de esta información en el sistema RFID anteriormente 
propuesto, permite una discriminación significativa de los candidatos propuestos por 
ese sistema. Se han analizado dos tecnologías, GSM y UMTS, siendo la segunda la que 
proporciona información más relevante. 

Como conclusión, se ha propuesto un sistema de posicionamiento en interiores que 
permite obtener un error medio de posicionamiento menor a un metro. Diversas 
técnicas se han analizado, observándose un rendimiento similar cuando la relación 
número de antenas y etiquetas es proporcional. Además, el uso de infraestructuras ya 
desplegadas como las redes de telefonía móvil o redes de área local inalámbrica, 
introducen una mejora en el sistema a un bajo coste. Este tipo de fuente de 
información, podría ser utilizada por los mecanismos SON para mejorar el rendimiento 
de las redes de telefonía móvil. 

 

D.5 Técnicas de balance de carga en interiores 

En este capítulo se presenta el diseño de diversos mecanismos de balance de carga 
para resolver problemas de congestión temporal y espacial en redes de femtoceldas 
para entornos comerciales y corporativos. 

Inicialmente, se describen algunos algoritmos de balance de carga que analizan 
información de la red del operador, como las llamadas bloqueadas, la carga de la red o 
la tasa de usuarios. A continuación, se han desarrollado nuevos mecanismos, que 
además de analizar los indicadores de la red del operador, disponen de información 
externa a dicha red. Concretamente, se ha analizado la posición de los usuarios. Todos 
estos sistemas, modifican la potencia de transmisión de las femtoceldas, para balancear 
usuarios de celdas sobrecargadas a celdas menos cargadas. Por un lado, se ha diseñado 
un mecanismo que estudia la distribución de los usuarios en las celdas congestionadas 
para, en base a los niveles de PRX de cada usuario, adapten la potencia de transmisión 
de las femtoceldas. Por otro lado, se ha desarrollado otro método que evalúa el PRX 
de cada usuario y, en base a valores históricos en la posición de los usuarios, se 
proponen adaptaciones en la potencia de transmisión de las femtoceldas para 
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descongestionar la femtocelda sobrecargada. Por último, se han analizado las 
consecuencias cuando la información de la posición de los usuarios suministrada no es 
exacta, siendo algo habitual para la mayoría de los sistemas de posicionamiento 
comerciales en interiores. 

Adicionalmente, la modificación de parámetros de configuración de la red puede 
ocasionar conflictos con otros mecanismos SON que adapten los mismos parámetros 
para fines diferentes. En este sentido, se ha estudiado un caso particular de 
coordinación entre algoritmos MLB y el caso de uso de energy-savings, ahorro de 
energía. 

La evaluación de todos estos mecanismos de balance de carga se ha llevado a cabo 
en un escenario realista y mediante un simulador dinámico LTE a nivel de sistema. 
Por un lado se ha observado la ventaja de utilizar la tasa de usuarios en redes de 
femtoceldas, donde existe un gran ancho de banda para un número de usuarios muy 
reducido (actualmente hasta 64 usuarios). Por otro lado, el uso de la posición de los 
usuarios en los métodos SON permite ofrecer un ajuste de parámetros más preciso para 
afrontar problemas temporales y espaciales de congestión de las femtoceldas. Además, 
según muestran los resultados, el uso de valores medios de la potencia recibida en cada 
punto permite una estabilidad mayor del sistema frente al análisis de valores de PRX 
instantáneos.  

También se ha observado que, el impacto de los errores de posicionamiento afecta 
negativamente a los mecanismos de MLB. Sin embargo, hasta un determinado error de 
posicionamiento, estos mecanismos incrementan la satisfacción del usuario frente a 
otros mecanismos del estado del arte. Por último, se han realizado dos experimentos en 
un entorno de oficinas real, donde se han desplegado cuatro femtoceldas y varios 
terminales. Corroborando a pequeña escala los resultados obtenidos en las pruebas con 
el simulador. 

Como conclusión, se han diseñado diversos mecanismos de balance de carga para 
resolver problemas de femtoceldas congestionadas en entornos comerciales y 
corporativos. Resaltando que, es importante el análisis de la tasa de usuarios 
conectados a las femtoceldas y de los indicadores externos a la red del operador, para 
ofrecer un mejor rendimiento de los sistemas SON. 

 

D.6 Conclusiones 

Las principales aportaciones de esta tesis son las siguientes: 
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• La descripción de un marco para la integración de información de contexto en 
los algoritmos de auto-gestión de red (SON). Para ello, se ha diseñado una 
nueva arquitectura de gestión de red compatible con la arquitectura OAM 
definida por el 3GPP. Gracias a esta aportación, los mecanismos SON pueden 
analizar información externa a la red del operador a cerca del estado del 
entorno, patrones de los usuarios, etc. Además, se consigue reducir la 
periodicidad de ejecución de estos mecanismos, permitiendo una adaptación de 
los parámetros de la red con mayor frecuencia para evitar problemas temporales 
y espaciales que degraden el servicio del operador.  

• El desarrollo de un sistema de posicionamiento en interiores basado en la 
tecnología RFID y múltiples antenas. Concretamente para entornos de interior 
como pasillos, donde las técnicas de fingerprinting son las más adecuadas. 
Diversos métodos y técnicas se han analizado para mejorar los resultados 
propuestos en el estado del arte en este tipo de escenarios. Además, se ha 
analizado la integración de la tecnología celular como fuente de bajo coste al ser 
una infraestructura ya desplegada, para el sistema de posicionamiento 
anteriormente propuesto, permitiendo mejorar su precisión y disminuir el error 
de posicionamiento. 

• El diseño de algoritmos de balance de carga en entornos comerciales y 
corporativos con despliegues de redes de femtoceldas. Estos mecanismos se 
basan en las características especiales de las femtoceldas, mejorando el 
rendimiento de los mecanismos de balance de carga clásicos. Además, se ha 
incluido la información de contexto como información adicional a la 
proporcionada por la red del operador, proporcionando un mayor conocimiento 
a los algoritmos SON sobre el estado del escenario, la movilidad de los usuarios, 
etc. Gracias a estos nuevos mecanismos, se ha mejorado el rendimiento de las 
redes de femtoceldas, así como diferentes indicadores de rendimiento a nivel de 
usuario. 

Las líneas futuras de investigación que se proponen son las siguientes: 

• En esta tesis se ha analizado la posición de los usuarios como información de 
contexto para los algoritmos de SON. Sin embargo, gracias a la gran expansión 
de dispositivos inteligentes como los smartphones, la disponibilidad de otro tipo 
de información de contexto como información sobre eventos sociales, patrones 
de movilidad, información sobre el parte meteorológico, etc., es un hecho 
inminente. El desarrollo de nuevas técnicas basadas en esta información 
permitirán mejorar el rendimiento de las redes de telefonía móvil.  
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• En esta tesis se ha propuesto un sistema de posicionamiento en interiores 
basado en la tecnología RFID. Sin embargo, la precisión de éste, y otros 
sistemas del estado del arte tienen mucho margen de mejora. Diversos servicios 
basados en localización (LBS) requieren de una precisión mayor y un error de 
localización del orden de centímetros, manteniendo unos costes de 
implementación bajos. Además, el uso de otras tecnologías celulares como LTE, 
pueden mejorar las prestaciones de dichos sistemas sin incrementar su coste. 

• En esta tesis se han evaluado los sistemas desarrollados tanto en entornos 
simulados como en escenarios reales. Sin embargo, los resultados obtenidos en 
los entornos reales estaban restringidos a un escenario particular y a un 
equipamiento específico. Por un lado, el método de posicionamiento en interiores 
se ha validado en un pasillo. Sería interesante implementar el mismo sistema en 
otro tipo de pasillos y espacios para generalizar sus prestaciones. Por otro lado, 
los métodos de balance de carga se han validado en un entorno de oficinas con 
una tasa de usuarios muy baja. Su implementación en escenarios más amplios y 
con mayor tasa de usuarios permitirá analizar mejor sus prestaciones.  
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