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José Tomás Entrambasaguas Muñoz
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ix



x



Abstract

In this thesis, the performance analysis of wireless communication systems affected by differ-

ent impairments is addressed. The BER calculation is accomplished by means of modelling

the decision variable at the receiver as a particular case of quadratic form D in complex

Gaussian random variables. Relevant results are obtained when circularly-symmetric RVs are

considered, providing exact as well as approximate closed-form expressions for Pr{D < 0}.
The general case of non circularly-symmetric RV is also considered, which had not been

previously analyzed in the literature, obtaining novel exact (and approximate) closed-form

expressions for Pr{D < 0}.
Additionally, a general framework for the probability calculation in QAM system is pre-

sented, which allows to express the BER as a weighted sum of components of error probability.

Closed-form expressions for these weights are given for QAM constellations with arbitrary

independent bit-mapping, which include previous results in the literature as particular cases.

With these tools, the BER of a number of MIMO-OFDM systems in non ideal conditions

has been obtained in exact closed form. Particularly, the following system model have been

analyzed:

• A 1 × NR QAM system with MRC reception, affected by Ricean fading, Ricean-faded

interferences and ICSI.

• A 2 × NR QAM system with Alamouti transmission and MRC reception, affected by

Ricean fading and ICSI.

• A 1×NR OFDM system with MRC reception, affected by Rayleigh fading, CFO, ICSI

and DC offset.

• An OFDM system affected by Rayleigh fading, ICSI and I/Q imbalances.

xi
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• A NT × NR OFDM system with transmit beamforming and MRC reception, affected

by Rayleigh fading and ICSI.



Resumen

En esta tesis se aborda el problema del análisis de prestaciones en sistemas de comunica-

ciones inalámbricas afectados por diferentes no idealidades. El cálculo de la BER se lleva

a cabo modelando la variable de decisión en el receptor como una forma cuadrática D de

variables aleatorias Gaussianas complejas. Se han obtenido resultados relevantes para el caso

de variables aleatorias circularmente simétricas, proporcionando expresiones cerradas (tanto

exactas como aproximadas) para el cálculo de Pr{D < 0}. También ha sido considerado

el caso general de variables aleatorias no circularmente simétricas, que no hab́ıa sido anal-

izado con anterioridad en la bibliograf́ıa, obteniendo expresiones expresiones cerradas (tanto

exactas como aproximadas) para Pr{D < 0}
Además, se presenta un marco anaĺıtico para el cálculo de probabilidades en sistemas

basados en QAM, que permite expresar la BER como una suma ponderada de componentes

de probabilidad de error. Se deriva una expresión cerrada para los coeficientes de esta suma

ponderada, que son válidos para constelaciones QAM arbitrarias con mapeo independiente

de los bits, y que incluye resultados previos como casos particulares.

Con estas herramientas, se han obtenido expresiones exactas y cerradas para la BER de

diferentes sistemas MIMO-OFDM no ideales. En particular, se han analizado los siguientes

modelos de sistema:

• Un sistema 1×NR QAM con recepción MRC, afectado por desvanecimientos tipo Rice,

interferencias tipo Rice y estimación de canal imperfecta (ICSI)

• Un sistema 2×NR QAM con transmisión de Alamouti y recepción MRC, afectado por

desvanecimientos tipo Rice e ICSI.

• Un sistema 1×NR OFDM con recepción MRC, canal Rayleigh, offset de frecuencia de

portadora (CFO), ICSI y offset de continua (DC).
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• Un sistema OFDM afectado por desvanecimientos tipo Rayleigh, ICSI y desbalanceos

I/Q.

• Un sistema NT ×NR OFDM con beamforming en transmisión y recepción MRC, canal

Rayleigh e ICSI.



Chapter 1

Introduction

T
HIS chapter introduces the reader into the main motivations of this thesis. The state

of the art in performance analysis is reviewed, and some open problems of interest are

identified. Then, the aims and organization of this thesis are presented, and the publications

obtained within this work are summarized.

1.1 Motivation

The measurement of the performance in communication systems has always been a matter of

extreme interest since their very origin [1–3]. Besides the channel capacity, which basically

provides information about the limiting error-free information rate that can be achieved, this

performance is usually quantified in terms of the Symbol Error Rate (SER) or the Bit Error

Rate (BER). Depending on the characteristics of the channel fading and the modulation

scheme, the performance analysis can be conducted following different approaches.

One of the milestone reference works in this area was published by Simon and Alouini [4],

where the performance of a number of digital communication systems under different fading

conditions was analyzed following a common strategy. Most of the results provided in this

paper allowed to obtain the SER in exact closed-form, whereas in other cases a numerical

integration was necessary.

The appearance of new digital communication systems that employ new modulation

or transmission schemes leads to the necessity of evaluating their performance in order to

enable a fair comparison with the existing techniques. Some examples are the use of multiple

1



1.1. MOTIVATION

antennas, usually referred to as multiple-input multiple-output (MIMO) systems, or the

orthogonal frequency division multiplexing (OFDM) technique. Both MIMO and OFDM

have been incorporated in many commercial and under-development wireless communication

technologies.

The analytical performance of most of wireless communication systems under different

fading conditions has already been accomplished when perfect channel state information

(CSI) is assumed to be known at the receiver side (or even at the transmitter side, if required)

[5, 6]. These results hence are useful to determine the maximum achievable performance of

these systems under ideal conditions. However, in practice there exist many factors which

may limit their performance: the appearance of interfering signals, the consideration of

imperfect CSI, or non-idealities due to physical implementation such as carrier frequency

offset (CFO), in-phase/quadrature (I/Q) imbalance and direct-current (DC) offsets are valid

examples.

In these situations, the system model becomes more complicated than the originally

considered in [4] due to the different natures of the random variables (RVs) involved in the

process. This implies not only that the analytical performance evaluation may result more

difficult, but that the simulation of these scenarios becomes unfeasible. Thus, the derivation

of exact closed-form expressions for the performance analysis of these systems is of utmost

necessity, in order to be able to efficiently determine how these impairments affect the system

performance.

There exist different approaches for the BER calculation in these scenarios: the derivation

of the probability density function (PDF) or the cumulative distribution function (CDF) of the

decision variable, the moment generating function (MGF) method [7] and the characteristic

function method are the most extended strategies. However, many of these systems allow

to express the decision variable as a particular case of a general quadratic form; hence, the

performance analysis can be conducted by following a common procedure.

In this line, the probability calculation in quadratic form receivers when complex Gaus-

sian circularly-symmetric RVs are considered was studied in [6, 8]. These results have enabled

the analysis of different scenarios [9, 10] where the involved RVs have non-zero mean, in which

2



CHAPTER 1. INTRODUCTION

the BER calculation following other approaches was not feasible. Therefore, the possibility

of expressing the decision variable as a quadratic form provides an efficient way to evaluate

the BER in exact closed-form in a number of scenarios.

Recently, Di Renzo [11] generalized the results given by Proakis, providing a means

to obtain the characteristic function of a general quadratic form for a number of fading

conditions (i.e., different natures of RVs). However, all the analyses in the literature assume

that the RVs have circular symmetry, which means that their real and imaginary parts are

not correlated and have the same variance. Since the condition of circular symmetry [12, 13]

may not be always fulfilled, it seems interesting to analyze general quadratic forms where

the RVs lack from circular symmetry.

Another matter that arises when evaluating the performance of a communication system

is related with the error probability calculation for a family of constellations. The calcu-

lation of the BER must take into account that different symbols may have different error

probabilities. This may be due to some factors, e.g. the decision regions vary for the symbols

located in the outer zone of the constellation, or the equivalent noise affects differently to

the I and Q components.

Many analyses in the literature, tough of unquestionable interest, usually are performed

for particular constellations such as Binary Phase-Shift Keying (BPSK), 4-Quadrature Am-

plitude Modulation (4-QAM) or 16-QAM [9, 14, 15]. As the constellation size is increased,

the calculation is often carried out by explicitly deriving the different probabilities of the re-

ceived symbol to be above or below a number of decision boundaries, and then these individ-

ual probabilities are combined accordingly. It seems hence desirable the use of a systematic

method which allows for a generic BER calculation, independently of the constellation size.

There exist some previous works in the literature devoted to this task, that allow for

the BER calculation in particular scenarios, such as additive white Gaussian noise (AWGN)

channels [16] and fading channels [17]. These results are based on the empirical observa-

tion of regular patterns in the constellation mapping, and hence lack from a mathematical

background. Besides, some assumptions are taken both in the constellation mapping (Gray

mapping) and in the RVs (circular symmetry). Thus, there are some scenarios which cannot

3
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be analyzed using these approaches.

The motivation of this thesis is twofold: On the one hand, to provide a general method

for the BER calculation in QAM based systems with arbitrary constellation size; on the other

hand, to obtain exact-closed form expressions for the BER of MIMO and OFDM systems in

non-ideal conditions, by means of a general analysis of Gaussian quadratic forms in complex

RVs.

1.2 Aims and organization

According to the motivation of this thesis, the following aims have been defined

a. The provision of a general framework for the BER calculation in M -QAM systems. In-

dependent bit mapping for the I and Q components will be assumed, which includes the

common case of Gray mapping.

b. The derivation of exact closed-form expressions for the BER of MIMO and OFDM systems

in some scenarios of interest. The analyzed scenarios will include one or several of the

following effects:

• Imperfect CSI (ICSI).

• Rayleigh and Ricean fading.

• Rayleigh and Ricean faded interferences.

• Transmit beamforming.

• Alamouti transmit diversity technique.

• Multibranch reception with maximal ratio combining (MRC).

• DC offset.

• I/Q Imbalance.

c. The derivation of approximate closed-form expressions for the BER of MIMO and OFDM

systems in some scenarios of interest, which allow the provision of a better insight into

the system performance.
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CHAPTER 1. INTRODUCTION

The analyzed scenarios must allow that the decision metric may be expressed in terms

of a general quadratic form in complex Gaussian RVs. Hence, a common procedure can be

used for the analysis of the different scenarios which are to be considered in this thesis.

With these aims, the contents of this thesis are structured as follows. The first two chap-

ters are devoted to introduce the mathematical tools which have been used and developed

in this work. Particularly,

• Chapter 2 presents the general framework for the BER calculation of M -QAM systems.

• Chapter 3 illustrates some key aspects related with the problem of probability calcula-

tion, and provides analytical results when general quadratic forms in complex Gaussian

RVs with and without circular symmetry are considered.

Chapters 4 to 6 use these tools to analyze different MIMO and OFDM systems, which had

not been previously analyzed in exact closed-form in the literature. Additional approximate

expressions are provided for particular scenarios of interest.

• In Chapter 4, two scenarios considering MIMO configurations in Ricean fading chan-

nels and ICSI are considered: (1) MRC reception in the presence of Ricean-faded

Interferences, and (2) Alamouti transmission with MRC reception.

• In Chapter 5, the effects of two major impairments associated with OFDM systems

with direct conversion are analyzed: (1) DC-offset and (2) I/Q imbalance. Rayleigh

fading and ICSI are considered in both scenarios.

• Chapter 6 analyzes a MIMO-OFDM system under Rayleigh fading with ICSI at both

the transmitter and receiver sides, where transmit beamforming and MRC reception

are used.

Finally, the main conclusions and the future work are outlined in Chapter 7.

1.3 Publications

The following publications have been derived from the work developed in this thesis
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Chapter 2

Generalized BER analysis of QAM
systems

T
HIS chapter presents a general framework for the performance analysis of M -QAM

systems. This methodology is valid for any QAM system with independent bit map-

ping for the in-phase (I) and quadrature (Q) components, and includes previous analyses in

the literature as particular cases.

This framework allows for the separation of the analysis in two main tasks, which can

be performed independently: the calculation of elementary coefficients, which values depend

only on the constellation mapping, and the calculation of components of error probability,

which values depend on the probability distribution of the random variables.

Firstly, the related work in the literature is briefly outlined in Section 2.1. Then, the

proposed framework is introduced in Section 2.2, providing expressions for a general case

(where no assumptions about the statistical distributions of the RVs are made) as well as

for some simplified scenarios of interest in communications. Finally, the calculation of the

elementary coefficients is accomplished in Section 2.3, for an arbitrary constellation mapping.

Compact expressions for the elementary coefficients are also provided for the usual case of

Gray mapping.
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2.1. RELATED WORK

2.1 Related Work

QAM is today the most extended modulation scheme in modern communication systems

[23], either in monocarrier transmission or in combination with other schemes: adaptive

modulation [24], multicarrier transmission [15] or MIMO systems [10]. BER analysis in

QAM systems has been widely studied by many authors.

For AWGN channels, closed-form expressions for arbitrary QAM with Gray mapping are

obtained in [16], based on the empirical observation of regular patterns in the constellation

mapping. In [25], an exact expression for the BER in QAM systems with arbitrary bit-

mapping is proposed, based on the Hamming distance between symbols. This technique

requires to calculate the probability of a received symbol to be within a square region in the

two-dimensional Euclidean space formed by the I and Q components.

In the case of fading channels, different results have been obtained. In [14], approximated

expressions for the BER in Rayleigh fading channels with imperfect CSI (ICSI) are obtained

when 16/64-QAM modulation is used. Closed-form expressions for different scenarios are

obtained in [9, 15, 26], and [27], but their results are calculated separately for particular

QAM constellations. Finally, Najafizadeh and Tellambura [17] present a general expression

for the BER of an arbitrary QAM constellation with Gray mapping. Similarly to [16], the

analysis is based on the observation of a regular pattern in the constellation mapping. This

result is used to analyze the BER in systems with MRC diversity with ICSI in generalized

Ricean fading channels.

Previous results allow for the exact BER computation in QAM systems for many sce-

narios, but under some restrictions. Particularly, the analysis presented in [16] is valid in

scenarios with Gray mapping, perfect channel state information (PCSI) and noise with cir-

cularly symmetric PDF. On the other hand, the analysis in [17] assumes Gray mapping and

equivalent noise with circularly symmetric PDF.

Here, we propose a new framework which allows to unify the BER calculation in QAM

based systems. This methodology is valid for any QAM-based system, independently of the

8



CHAPTER 2. GENERALIZED BER ANALYSIS OF QAM SYSTEMS

constellation mapping or the distribution of the channel gain and the noise. The only restric-

tion in our analysis is that in-phase and quadrature components can be detected separately,

that is, independent bit mapping. The BER expression obtained in our analysis is expressed

as a weighted sum of components of error probability (CEPs) which depend on the proba-

bility distribution of the random variables in the scenario under analysis. The calculation

of these weights (namely elementary coefficients) depends on the particular constellation

mapping, so it can be tackled separately.

In contrast to [16] and [17], where the final expressions are derived attending to the

observation of regular patterns in the bit mapping, our method provides a mathematical

background to the analysis. Unlike [25], our method only needs to calculate the probability

of a received symbol to be within a half-plane in the I-Q plane, which is generally easier to

derive.

2.2 Generalized BER Analysis

2.2.1 Analytical Framework

Let us consider the general problem of the BER calculation when the symbol y to be detected

can be expressed in the following canonical form

y = az + ζ, (2.2.1)

where a (gain mismatch) and ζ (equivalent noise) are complex random variables in the

most general case. In this model, the gain mismatch a accounts for the effect of imperfect

channel compensation, whereas the equivalent noise ζ includes the effect of additive noise,

interferences and other receiver impairments.

Let z be the transmitted symbol, belonging to a rectangular QAM constellation which

consists on the composition of two L1-PAM and L2-PAM constellations associated with the

in-phase and quadrature signal components, respectively. Since different bits are mapped

onto I and Q components for this family of constellations, both the I and Q components can

be detected separately. Thus, the only restriction in the forthcoming analysis relies in the

consideration of independent bit mapping for I and Q components.
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2.2. GENERALIZED BER ANALYSIS

Fig. 2.1 shows an example of a 64-QAM constellation, useful to present the adopted nota-

tion. The set of complex symbols is {su,v = (2u − L1 − 1)d + j(2v − L2 − 1)d}u=1,...,L1;v=1,...,L2 ,

where 2d is the minimum distance between symbols. Every su,v symbol has associated a set of

bits of the I component {bIi (u)}i=1,...,log2(L1) and a set of the Q component {bQi (v)}i=1,...,log2(L2).

The set of decision boundaries for the I and Q components are {BI(k) = (2k−L1)d}k=1,...,L1−1

and {BQ(k) = j(2k − L2)d}k=1,...,L2−1 respectively.

Figure 2.1: 64-QAM constellation with independent mapping of I and Q component. The
bits for I and Q components are mapped as {bI3 (u); bQ3 (v); bI2 (u); bQ2 (v); bI1 (1); bQ1 (v)}, e.g.
s6,2 = 101001.

The BER of the considered rectangular QAM constellations can be expressed as the

average, over all the bits and transmitted symbols, of the error probability of a given bit

10
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conditioned on a given transmitted symbol

BERQAM =
1

L1L2

L1∑
u=1

L2∑
v=1

1

log2(L1L2)

⎧⎨
⎩

log2(L1)∑
i=1

PI(i, u, v) +

log2(L2)∑
i=1

PQ(i, u, v)

⎫⎬
⎭ , (2.2.2)

where PI(i, u, v) = Pr{error in bIi (u)| z = su,v} and PQ(i, u, v) = Pr{error in bQi (v)| z = su,v},
respectively. Each term PI(i, u, v) can be calculated as a linear combination of probabili-

ties of the real part of the received symbol y to be above or below of a variable number of

decision boundaries. This assert is also valid for the Q component terms, when considering

the imaginary part of y. For example, the error probability of bit {bI2 (1)} of the symbol y

conditioned on transmitted symbol z = s1,1 is (considering the bit mapping used in Fig. 2.1)

expressed as

PI(2, 1, 1) = Pr{�{y − BI(2)} > 0| z = s1,1} − Pr{�{y − BI(6)} > 0| z = s1,1}. (2.2.3)

The idea underlying the example in (2.2.3) can be formalized in order to write the BER

expression (2.2.2) as

BERQAM =
1

L1L2

L1∑
u=1

L2∑
v=1

1

log2(L1L2)

⎡
⎣log2(L1)∑

i=1

{
u−1∑
k=1

α−
u (i, k) · I−

u,v(k) +

L1−1∑
k=u

α+
u (i, k) · I+

u,v(k)

}

+

log2(L2)∑
i=1

{
v−1∑
k=1

β−
v (i, k) · Q−

u,v(k) +

L2−1∑
k=v

β+
v (i, k) · Q+

u,v(k)

}⎤⎦ ,

(2.2.4)

where the components of error probability (CEP) are defined as

I−
u,v(k) = Pr {� {y − BI(k)} < 0| z = su,v} , I+

u,v(k) = Pr {� {y − BI(k)} > 0| z = su,v},
Q−

u,v(k) = Pr {� {y − BQ(k)} < 0| z = su,v} , Q+
u,v(k) = Pr {� {y − BQ(k)} > 0| z = su,v}.

(2.2.5)

The values of the elementary coefficients α±
u (i, k) and β±

v (i, k) belong to the set {−1, 0, 1}
and represent changes in the corresponding value of bit i across the k -th decision boundary

for the su,v symbol: 0 indicates no bit value change, 1 indicates a bit change from the

correct value to a wrong one, and -1 from the wrong value to the correct one. For the

example presented in (2.2.3), the values for the elementary coefficients are α+
1 (2, 2) = 1,

11



2.2. GENERALIZED BER ANALYSIS

α+
1 (2, 6) = −1 and α+

1 (2, m) = 0, for m ∈ {1, 3, 4, 5, 7} . Note that α and I are associated

with the I component, whereas β and Q are associated with the Q component. The sign on

the super index of α, β, I and Q indicates if the k -th decision boundary is below or above

(respectively - or +) either the real part (for α and I) or imaginary part (for β and Q) of

the symbol su,v. The calculation of these elementary coefficients is tackled in Section 2.3.

Since α±
u (i, k) and β±

u (i, k) are the only constants that depend on the bit i, they can be

grouped in the following way

α±
u (k) =

log2(L)∑
i=1

α±
u (i, k), β±

v (k) =

log2(L)∑
i=1

β±
v (i, k). (2.2.6)

This leads to the final BER expression

BERQAM =
1

L1L2

L1∑
u=1

L2∑
v=1

1

log2(L1L2)

[
u−1∑
k=1

α−
u (k) · I−

u,v(k) +

L1−1∑
k=u

α+
u (k) · I+

u,v(k)

+
v−1∑
k=1

β−
v (k) · Q−

u,v(k) +

L2−1∑
k=v

β+
v (k) · Q+

u,v(k)

]
.

(2.2.7)

Hence, expression (2.2.7) allows for the exact BER calculation in any scenario which

can be reduced to the canonical form y = az + ζ, independently of the distribution of the

random variables a and ζ. Thus, the derivation of the BER expression is reduced to two

main calculations: the elementary coefficients, whose value only depends on the constellation

mapping, and the CEPs, whose expression is determined only by the distribution of the

random variables a and ζ.

Although expression (2.2.7) is general, some simplifications can be done for particular

scenarios of interest in order to obtain more compact expressions. For the sake of clarity

and without loss of generality, square M -QAM is considered (M = L2) in the forthcoming

analysis. However, equivalent expressions for rectangular QAM or PAM can be obtained by

following the same procedure.
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2.2.2 Arbitrarily distributed gain mismatch and circularly sym-
metric noise

Preliminary definitions

Definition 1. A random variable z is said to be circularly symmetric with respect to μ if
z − μ and z′ � (z − μ) ejθ have the same distribution ∀θ. In case μ = 0, it is usual to omit
the center of symmetry in the definition of circular symmetry [13].

Corollary 1. Let z � x+ jy be a complex continuous circularly symmetric RV. Then x and
y are identically distributed RVs, and the PDFs of x and y are even functions.

Proof. Let the PDF of z be denoted as fZ(z) = fX,Y (x, y). According to Definition (1), we
have z′ = zejθ = x′ + jy′. Therefore,

x � g1(x
′, y′) = x′ cos θ + y′ sin θ, (2.2.8)

y � g2(x
′, y′) = −x′ sin θ + y′ cos θ. (2.2.9)

Then, the function fX′,Y ′(x′, y′) can be calculated as

fX′,Y ′(x′, y′) = fX,Y (x, y) |x=g1(x′,y′),y=g2(x′,y′) |J | , (2.2.10)

where |J | is the Jacobian of the transformation of random variables defined as

|J | �
∣∣∣∣∣

∂g1

∂x′
∂g1

∂y′
∂g2

∂x′
∂g2

∂y′

∣∣∣∣∣ . (2.2.11)

Due to the circular symmetry of z, we have fX′,Y ′(x′, y′) ≡ fX,Y (x′, y′). Hence,

fX,Y (x′ cos θ + y′ sin θ,−x′ sin θ + y′ cos θ) = fX,Y (x′, y′). (2.2.12)

For different values of θ, we have

θ =
π

2
, =⇒ fX,Y (y′,−x′) = fX,Y (x′, y′); (2.2.13)

θ = π, =⇒ fX,Y (−x′,−y′) = fX,Y (x′, y′); (2.2.14)

θ =
3π

2
, =⇒ fX,Y (−y′, x′) = fX,Y (x′, y′). (2.2.15)

Using these symmetries, it is easy to see that

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

−∞
fX,Y (−x,−y)dy = fX(−x); (2.2.16)

fX(x) =

∫ ∞

−∞
fX,Y (x, y)dy =

∫ ∞

−∞
fX,Y (y,−x)dy = fY (−x) = fY (x). (2.2.17)
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Simplified BER expression

Let us consider a scenario where the equivalent noise ζ is a circularly symmetric RVs with

respect to zero.

Due to the circular symmetry, the real and imaginary parts of ζ are identically distributed,

and hence the quadrature CEPs are equivalent to the in-phase CEPs, i.e I±
u,v(k) = Q±

L−v+1,u(k).

Besides, as the PDF of the real and imaginary parts of ζ are assumed to be even functions,

the CEPs also present the following symmetry I+
u,v(k) = I−

L−u+1,L−v+1(L − k). Summarizing,

we can write

BERQAM =
L∑

u=1

L∑
v=1

L−1∑
k=u

ωu(k) · I+
u,v(k), (2.2.18)

where

ωu(k) =
1

M

1

log2(M)

[
α+

u (k) + α−
L−u+1(L − k) + β+

u (k) + β−
L−u+1(L − k)

]
. (2.2.19)

Therefore, the derivation of a closed-form expression for the BER is reduced to the

calculation of the CEP I+
u,v(k). For the particular case of Gray mapping, the resultant

expression (2.2.18) is formally equivalent to that given in [17].

2.2.3 No gain mismatch and circularly symmetric noise

Another typical scenario in communications is presented when ideal channel compensation

is assumed at the receiver (i.e. a = 1). This consideration allows for the application of

additional simplifications. Thus, assuming that there is no gain mismatch, consequently

there is no cross-quadrature interference. Hence, the Q component of the transmitted symbol

z has no influence on the in-phase CEP, and vice versa. Thereby, equivalent CEPs can be

defined

I±
u (k)

Δ
= I±

u,v(k), Q±
v (k)

Δ
= Q±

u,v(k). (2.2.20)

Moreover, the CEPs depend both on the distance between the transmitted symbol z

and the decision boundary and on the fact that z is above or below a certain boundary.

14



CHAPTER 2. GENERALIZED BER ANALYSIS OF QAM SYSTEMS

Therefore, e.g. I+
u (k) can be expressed as

I+
u (k) = Pr {� {y − BI(k)} > 0| z = su,v} = Pr {� {y − su,v} > �{BI(k) − su,v}}

= Pr {� {ζ} > (2 (k − u) + 1)d} .
(2.2.21)

Thus, we can exploit these symmetries to define

I+(m)
Δ
= I+

u (u + m − 1), 1 ≤ m ≤ L − u,

Q+(m)
Δ
= Q+

v (v + m − 1), 1 ≤ m ≤ L − v,

I−(m)
Δ
= I−

u (u − m), 1 ≤ m ≤ u − 1,

Q−(m)
Δ
= Q−

v (v − m), 1 ≤ m ≤ v − 1.

(2.2.22)

Considering that PDF of ζ is circularly symmetric, we can write:

I+(m) = I−(m) = Q+(m) = Q−(m) = Pr {� {ζ} > (2m − 1) d} . (2.2.23)

Under these assumptions, the previous definitions allow us to obtain the following com-

pact BER expression

BERQAM =
L−1∑
m=1

ω(m)I+(m), (2.2.24)

where

ω(m) =
1

M log2(M)

[
L−m∑
u=1

α+
u (u + m − 1) + α−

u+m(u) + β+
u (u + m − 1) + β−

u+m(u)

]
.

(2.2.25)

An equivalent expression can be derived for a L-PAM

BERPAM =
L−1∑
m=1

ω(m)I+(m), (2.2.26)

where

ω(m) =
1

L log2(L)

[
L−m∑
u=1

α+
u (u + m − 1) + α−

u+m(u)

]
. (2.2.27)

In the particular case of Gray mapping, expressions (2.2.24) and (2.2.26) are formally

equivalent to the expression obtained in [16]. In the special case of BPSK, it is easy to show

that (2.2.24) reduces to

BERBPSK = I+(1). (2.2.28)
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2.3. CALCULATION OF ELEMENTARY COEFFICIENTS

Figure 2.2: Definition of the mapping sequence of Fig. 2.1 as a set of discrete time signals.

2.3 Calculation of Elementary Coefficients

The closed-form expressions for the BER calculated in the previous Section are reduced to

a weighted sum of CEPs. The weights or elementary coefficients, namely α and β in (2.2.7),

are constants which value only depends on the constellation mapping. In this Section, we

tackle the calculation of these constants from a novel point of view, based on the definition

of the constellation mapping as a set of discrete time signals. Firstly, we illustrate the

calculation procedure for a generic constellation mapping, and then we particularize for the

relevant case of Gray mapping.

2.3.1 General Case

Let the bit sequence to be mapped in the QAM constellation (either in I or Q components) be

expressed, for instance, as depicted in Fig. 2.2, where the index i = 1 . . . log2 L addresses the

bits within each symbol whereas m = 1 . . . L points the symbol along the I or Q components.

Note that the bit sequence in Fig. 2.2 is coincident with the constellation in Fig. 2.1, and

corresponds to a 64-QAM with independent bit mapping (although not Gray mapping).

Let us consider the bit sequence as a set of i discrete time signals denoted as bi(m), in

order to mathematically represent the binary values in the i-th bit of the m-th symbol. From
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this definition, the discrete derivative of the bit sequence in the k-th boundary is given by

b
′
i(k) = bi(k + 1) − bi(k), 1 ≤ k ≤ L − 1. (2.3.1)

Note that bi(m) may represent either bIi (u) or bQi (v) according to the notation in Fig. 2.1.

Expression (2.3.1) provides us the information about the bit error occurrence after boundary

crossing. In this case, according to the constellation mapping in the example, the expression

for the bit i = 2 is b
′
2(k) = [0, 1, 0, 0, 0,−1, 0]. The interpretation of b

′
i(k) values is done as

follows: 0 indicates no bit value change, 1 indicates a bit change from 0 to 1, and -1 indicates

a change from 1 to 0.

Since the elementary coefficients α±
u (i, k) and β±

v (i, k) represent changes in the detected

value of bit i across the k -th decision boundary, we can directly express the elementary

coefficients (e.g. α+) as:

α+
u (i, k) = (1 − 2bi(u))b

′
i(k), (2.3.2)

where (1 − 2bu(i)) operation is performed to translate the values of bi(u) from the set {0, 1}
to {1,−1}. The calculation of α−

u (i, k) and β±
v (i, k) is performed in a similar way

α−
u (i, k) = −(1 − 2bi(u))b

′
i(k),

β+
v (i, k) = (1 − 2bi(v))b

′
i(k),

β−
v (i, k) = −(1 − 2bi(v))b

′
i(k).

(2.3.3)

2.3.2 Gray Mapping

For the relevant case of Gray mapping, an explicit expression for the calculation of elementary

coefficients can be derived. First, we will focus on the case of the coefficients α+
u (i, k)

associated with the I component. The remainder coefficients α−
u (i, k), β+

v (i, k) and β−
v (i, k)

are deduced in a similar way.

Let us observe the sequence bi(u) of the bits with Gray mapping for square M -QAM

along the I component, for the case of M = 256, as depicted in figure 2.3. The index

i = 1 . . . log2 L addresses the bits within each symbol whereas u = 1 . . . L points the symbol

along the I component. If the bit sequence is considered as a set of i discrete time signals,
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Figure 2.3: Definition of a 256-QAM Gray mapping sequence as a set of discrete time signals.

we can easily deduce the following mathematical representation for the binary value in the

i-th bit of the u-th symbol

bi(u) =
1

2
(1 − Ω (i, u)) , (2.3.4)

where Ω(i, x) is defined in (2.3.5) as

Ω (i, x)
Δ
= sign {cos (ωi(x − 1/2))} , (2.3.5)

and the frequency ωi = 2π
2i+1 accounts for the periodicity of the discrete signal bi(u).

Otherwise, the discrete derivative of the bits sequence in the k-th boundary is given by

b
′
i(k) = bi(k + 1) − bi(k) =

1

2
(Ω (i, k) − Ω (i, k + 1)) =

1

2
(Ω (i, k) − Ω (i,−k)) , (2.3.6)

where k = 1 . . . L−1. Hence, combining (2.3.4) and (2.3.6) we obtain the following expression

α+
u (i, k) = (1 − 2bi(u))b

′
i(k) =

1

2
Ω (i, m) [Ω (i, k) − Ω (i,−k)] . (2.3.7)

The remainder coefficients α−
u (i, k), β+

v (i, k) and β−
v (i, k) can be deduced following the

same procedure, yielding

α±
m (i, k) = β±

m (i, k) = ±1

2
Ω (i, m) [Ω (i, k) − Ω (i,−k)] , (2.3.8)
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where m = u or m = v for α± or β± coefficients, respectively.

As previously stated, α±
u (i, k) and β±

v (i, k) are the only constants in (2.2.4) that depend

on the bit i. Therefore, they can be grouped as

α±
m(k) =

log2(L)∑
i=1

±1

2
Ω (i, m) [Ω (i, k) − Ω (i,−k)] = β±

m(k). (2.3.9)

2.4 Discussion

In this chapter, a general framework for the BER analysis of QAM systems with independent

bit-mapping has been presented. Using the proposed methodology, the BER is expressed

as a weighted sum of components of error probability, where the values of the weights or

elementary coefficients only depends on the constellation mapping.

A closed-form expression is given for a general scenario (2.2.7), and additional simplified

expressions are provided for two particular scenarios of interest in communications: (1) circu-

larly symmetric equivalent noise (2.2.18), and (2) perfect channel estimation with circularly

symmetric equivalent noise (2.2.24).

Additionally, a systematic procedure for the calculation of the elementary coefficients is

presented, which enables an easy computation for any constellation mapping (2.3.3). Com-

pact results are also given for the relevant case of Gray mapping (2.3.8).

The proposed framework is to be used in Chapters 4 to 6 to obtain closed-form expressions

for the BER in a number of scenarios. The main contributions of this section have been

published in [19].
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Chapter 3

BER analysis using quadratic forms in
complex Gaussian RVs

I
N this chapter, we tackle the problem of the error probability calculation in systems

where the decision variable at the receiver side can be expressed in terms of a general

quadratic form in complex Gaussian RVs.

The contents of this chapter can be summarized as follows: Firstly, the most usual

strategies for probability calculation in the literature are presented. Then, we focus on the

probability calculation using complex Gaussian quadratic forms, which is the approach to be

used in this thesis. Separate analyses are provided depending whether the involved RVs are

circularly symmetric or not. In both cases, exact expressions for the calculated probabilities

are obtained, as well as approximate expressions for some particular scenarios of interest.

In the following, we use ∗ to denote the complex conjugate operation, | · | to indicate

the modulus of a complex number, and E{·} to represent the expectation operation. The

superindex T is used to indicate the transpose operation, and H denotes conjugate transpose

operation.

3.1 Formulation

In most scenarios, the major difficulty in carrying out performance analysis of communica-

tion systems is to calculate the probability that a random variable X is greater (or smaller,
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equivalently) than a certain value X0, i.e., Pr{X < X0}. Hence, depending on the statis-

tical distribution of X, the calculation of Pr{X < X0} may be conducted under different

approaches.

The more direct strategy is the calculation of the cumulative distribution function (CDF)

FX(x), which represents the probability that the random variable X takes on a value less

than or equal to X0, i.e., FX(X0) = Pr{X ≤ X0}. Unfortunately, the CDF calculation may

result unfeasible for many practical statistical distributions of X, and therefore alternative

approaches must be taken in order to calculate analytical expressions for these probabilities.

3.1.1 Probability Density Function

The probability density function (PDF) of a random variable X, namely fX(x), describes

the probability of a random variable to take a certain value within the observation space.

The probability of a X to fall within a given range of values is given by the integral of its

PDF over this range, as

Pr{a < x ≤ b} =

∫ b

a

fX(x)dx. (3.1.1)

Hence, the relationship between the PDF and CDF is clearly established as

FX(X0) =

∫ X0

−∞
fX(x)dx. (3.1.2)

3.1.2 Moment Generating Function

The moment generating function (MGF) of a random variable X is defined as

MX(t) � E{etX} =

∫ ∞

−∞
etxdFX(x). (3.1.3)

The MGF is often used as a calculation tool, since its mth derivative evaluated at t = 0

provides the mth moment of X. Besides, it allows to compute the PDF (in case this PDF is

a continuous function) by taking the inverse two-sided Laplace transform of MX(t). How-

ever, the calculation of the PDF when the MGF is known is usually performed through

identification, since there exist a uniqueness relationship between MX(t) and fX(x).
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3.1.3 Characteristic Function

The characteristic function ΦX(ω) of a random variable X is defined as

ΦX(ω) � E{ejωX} =

∫ ∞

−∞
ejωxdFX(x). (3.1.4)

In case the PDF exists, the characteristic function is related with the PDF via the

Fourier transform. In some scenarios, either the moments or the MGF may not exist, since

the involved integrals are not convergent. On the contrary the characteristic function always

exists, and hence it is used instead.

3.1.4 Conditional Probability

In some cases the probability Pr{X < X0} cannot be calculated in closed-form, specially

when the RV X is composed by a combination of individual RVs with different statistical

distributions, i.e., X = g(X1, . . . , Xm). In this situation, it may result more appropriated to

generate an auxiliary RV, namely Y , conditioned to a particular value of a set of Xi, i.e.,

{Y (Xi) � X |Xi}. Hence, Pr{Y (Xi) < X0} is referred to as the conditional probability.

Thus, the probability Pr{X < X0} can be calculated as

Pr{X < X0} =

∫ ∞

−∞
fY (X0, Xi)p(Xi)dXi, (3.1.5)

where p(Xi) is the PDF of the RV set Xi.

3.1.5 General Quadratic Forms

In many communication systems, it is very usual that the decision variable can be expressed

as a special case of the general quadratic form D, as

D �
L∑

k=1

A|Xk|2 + B|Yk|2 + CXkY
∗
k + C∗X∗

kYk, (3.1.6)

where A, B ∈ R and C ∈ C are constant values, and Xk and Yk are in general pairs of

arbitrarily distributed complex RVs. In this thesis, we will focus on the special case of general

quadratic forms in complex Gaussian RVs, which naturally appear in many scenarios when

evaluating the performance analysis in terms of the BER.

23
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3.2 Quadratic forms in circularly symmetric complex

Gaussian RVs

3.2.1 Exact analysis

Let us consider a general quadratic form (3.1.6), in complex valued Gaussian RVs. In the

following, we will use the compact notation for quadratic forms introduced in [10], as

D =
L∑

k=1

xT
k Qxk, (3.2.1)

where the RV vector xk and the quadratic form matrix Q are given by

xk =

[
Xk

Yk

]
;Q =

[
A C

C∗ B

]
. (3.2.2)

In [6] it is presented a general exact closed-form expression for Pr{D < 0}, under some

restrictions:

• The Xk and Yk are a pair of correlated complex-valued Gaussian RVs.

• The {Xk, Yk} L pairs are mutually statistically independent and identically distributed.

• The RVs {Xk − E{Xk}} and {Yk − E{Yk}} are circularly symmetric, i.e., their real

and imaginary parts are independent and have the same variance [13].

In this scenario, the probability Pr {D < 0} can be calculated as

Pb � Pr {D < 0} =
1

2π

∫ 0

−∞
dD

∫ ∞

−∞
Φ(ω)e−jωDdω, (3.2.3)

where Φ(ω) is the characteristic function of D.

In [28], the characteristic function of a quadratic form in complex Gaussian RVs in the

form xT
k Qxk is expressed as

Φ(ω) =
exp
(
mH

k R−1
[
I − (I − jωRQ)−1]mk

)
|I − jωRQ| , (3.2.4)

where I is the identity matrix, mk � E {xk} and R � E
{
(xk − mk)(x

H
k − mH

k )
}

are the

mean vector and the covariance matrix of xk, respectively.

24



CHAPTER 3. BER ANALYSIS USING QUADRATIC FORMS IN COMPLEX
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After some algebra, the terms in (3.2.4) can be rearranged, leading the characteristic

function to be expressed as

Φ(ω) =
1

(1 − jωλ1) (1 − jωλ2)
exp

(
jωmH

k Qmk + ω2λ1λ2m
H
k R−1mk

(1 − jωλ1) (1 − jωλ2)

)
, (3.2.5)

where λi are the eigenvalues of RQ matrix.

By means of changing the order of integration in (3.2.3), we can express

Pb = − 1

2πj

∫ ∞+jε

−∞+jε

Φ(ω)

ω
dω, (3.2.6)

where ε > 0 is a small number inserted to avoid the singularity at ω = 0 in the integration

path [6].

The final expression for Pb is given in exact closed-form [10] by

Pb =Q1(a, b) +
L−1∑
m=0

Cm(a, b, η)Im(ab) × exp

{
−(a2 + b2)

2

}
, (3.2.7)

where Q1(a, b) is the Marcum Q-function, Im(x) is the mth order Bessel function of the first

kind, and a, b, η and Cm(·) parameters are calculated using the expressions in Table 3.1.

3.2.2 Approximate expression

Expression (3.2.7) allows for the exact calculation of Pr {D < 0} probability in closed-form.

However, it may result useful to find an approximate expression which enables the provision

of a better insight into the system performance. Here, we will use some asymptotical rela-

tionships between the special functions in (3.2.7) and the well-known Gaussian Q function,

in order to derive approximate expressions for Pr {D < 0}.
Particularly, we can use the asymptotic relations [5]

Q1(a, b) ∼
√

b

a
Q(b − a), when b → ∞,

Im(ab) ∼ exp(ab)√
2πab

, when a · b → ∞,

(3.2.8)

to express, after some algebra

Pr {D < 0} ≈
√

b

a
Q(b − a) +

b − a√
ab

exp(−1
2
(b − a)2)√

2π(b − a)

NR−1∑
m=0

Cm(a, b, η). (3.2.9)
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Table 3.1: Probability computation of Gaussian quadratic form.

Functions and Definitions

Parameters

{λi}i=1,2
1
2
tr(RQ) + (−1)i−1

√(
1
2
tr(RQ)

)2 − det(RQ)

η

∣∣∣∣λ1

λ2

∣∣∣∣
a

√
2λ2

(
ΣL

k=1m
H
k [Q − λ1R

−1]mk

)
(λ1 − λ2)

2

b

√
2λ1

(
ΣL

k=1m
H
k [Q − λ2R

−1]mk

)
(λ1 − λ2)

2

Cm(a, b, η)

⎧⎪⎪⎨
⎪⎪⎩

−1 +
1

(1 + η)2L−1

L−1∑
n=0

(
2L − 1

n

)
ηn , m = 0

1

(1 + η)2L−1

L−1−m∑
n=0

(
2L − 1

n

)[(
b

a

)m

ηn −
(a

b

)m

η2L−1−n

]
, m �= 0

Finally, using the asymptotic relation for the Gaussian Q function, Q(x) ∼ exp(−x2

2
)√

2πx
, when

(b − a) → ∞, we obtain the final approximate expression

Pr {D < 0} ≈ T · Q(b − a), (3.2.10)

where T is a constant value defined as

T �
√

b

a
+

b − a√
ab

NR−1∑
m=0

Cm(a, b, η). (3.2.11)
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3.3 Quadratic forms in non-circularly symmetric com-

plex Gaussian RVs

3.3.1 Notation and preliminary concepts

Let x ∈ C
n and A ∈ C

m×p. Then, we use the mappings x → x̆ and A → Ă defined in [29],

where

x̆ �
[
�(x)

�(x)

]
=

[
xr

xi

]
∈ R

2n, Ă �
[

�(A) −�(A)

�(A) �(A)

]
∈ R

2m×2p. (3.3.1)

Let y ∈ C be a complex RV. The real covariance matrix [13] of the composite real RV y̆

is denoted by

Σy̆ � E{y̆y̆T} =

[
σ2

yr
σyryi

σyryi
σ2

yi

]
, (3.3.2)

and the variance of y is given by σ2
y = σ2

yr
+ σ2

yi
. According to (3.3.2), the RV y is said to be

circularly symmetric if σ2
yr

= σ2
yi

and σyryi
= 0.

3.3.2 Exact analysis

In Section 3.2.1, a detailed analysis of general quadratic forms in complex-valued Gaussian

RVs was presented, providing expressions for the calculation of Pr{D < 0} in terms of

Marcum-Q and modified Bessel functions of the first kind. Nevertheless, these expressions

are not valid when non-circularly symmetric RVs are considered. Here, we introduce the

analysis of general quadratic forms in complex-valued non circularly-symmetric Gaussian

RVs, for the particular case of zero-mean.

Let D � A|X|2 + B|Y |2 + CXY ∗ + C∗X∗Y be a general quadratic form, which can be

compactly expressed as

D = xT
k Qxk, (3.3.3)

where

xk =

[
X

Y

]
;Q =

[
A C

C∗ B

]
. (3.3.4)

Let us consider that the involved RVs are complex-valued non-circularly symmetric Gaus-

sian RVs which real and imaginary parts are treated separately. Hence, adopting the notation
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and the mappings presented in (3.3.1), we can express

D = x̆T
k Q̆x̆k. (3.3.5)

In this scenario, the probability Pr {D < 0} can be calculated as

Pr {D < 0} =
1

2π

∫ 0

−∞
dD

∫ ∞

−∞
Φ(ω)e−jωDdω, (3.3.6)

where Φ(ω) is the characteristic function of D. By means of changing the order of integration,

we can express

Pr {D < 0} = − 1

2πj

∫ ∞+jε

−∞+jε

Φ(ω)

ω
dω, (3.3.7)

where ε > 0 is a small number inserted to avoid the singularity at ω = 0 in the integration

path [6]. The characteristic function of D is given by

Φ(ω) =
1

4∏
i=1

√
1 − 2jλiω

, (3.3.8)

where λi are the eigenvalues of RQ̆ matrix [30].

Since Q is an indefinite matrix, its two eigenvalues hold that Qλ1 > 0 and Qλ2 < 0.

Using the properties of mapping Q → Q̆ given in [29], Q̆ matrix is also indefinite and

its eigenvalues are double, such as Q̆λ1,2 = Qλ1 and Q̆λ3,4 = Qλ2. Therefore, as R is a

positive-definite matrix, the resultant eigenvalues of RQ̆ matrix hold that {λ2 ≥ λ1 > 0}
and {λ3 ≤ λ4 < 0} under Sylvester’s law of inertia [31]. Note that λ1 = λ2 and λ3 = λ4 only

in the limit case of circular symmetry1.

Combining (3.3.7) and (3.3.8), we obtain

Pr {D < 0} =
−1

2πj

∞+jε∫
−∞+jε

dω

ω
4∏

i=1

√
1 + j ω

ωi

�
∞+jε∫

−∞+jε

Υ(ω)dω, (3.3.9)

where ωi � −1
2λi

. This integral can be calculated by contour integration as depicted in Fig.

3.1, where (3.3.9) is denoted as the integral along C∞.

1For the particular case of circular symmetry, a 2 × 2 covariance matrix can be calculated as RC �
E
{
xkxH

k

}
. The eigenvalues of RC are λa ≡ λ1 = λ2 and λb ≡ λ3 = λ4, respectively.
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Figure 3.1: Contour integration for Pr{D < 0} calculation around the branch cuts.

Since
∫

CR
Υ(ω)dω → 0 as R → ∞, the integral in (3.3.9) is equivalent to the calculation

of four integrals around the branch cuts of ω3 and ω4, as follows

Pr {D < 0} =

∫
Cδ1

Υ(ω)dω +

∫
Cδ2

Υ(ω)dω +

∫
CA

Υ(ω)dω +

∫
CD

Υ(ω)dω. (3.3.10)

The integration paths can be parameterized as

Cδ1 =
{
jω4 + δejt; t ∈ [0, π)

}
; (3.3.11)

Cδ2 =
{
jω3 − δejt; t ∈ [π, 2π)

}
; (3.3.12)

CA = {jω3 − td3,4 + δ; t ∈ [0, 1]} ; (3.3.13)

CD = {jω4 − td4,3 − δ; t ∈ [0, 1]} . (3.3.14)

When δ → 0, the integrals around Cδ1 and Cδ2 also tend to zero. The integral along the

ascending path CA can be expressed as

∫
CA

Υ(ω)dω =
1

2πj

1∫
0

jd3,4dt

j(ω3 − td3,4)
4∏

i=1

√
1 + j j(ω3−td3,4)

ωi

. (3.3.15)

29



3.3. QUADRATIC FORMS IN NON-CIRCULARLY SYMMETRIC COMPLEX
GAUSSIAN RVS

After some algebra, we have

∫
CA

Υ(ω)dω =
1

2π

√
ω1ω2ω4

ω3d1,3d2,3

1∫
0

t−
1
2 (1 − t)−

1
2

(
1 − t

d3,4

ω3

)−1(
1 + t

d3,4

d1,3

)−1
2
(

1 + t
d3,4

d2,3

)−1
2

dt.

(3.3.16)

This equation can be re-expressed in terms of the Lauricella FD function, using its integral

form [32] as

FD

(
1

2
, 1,

1

2
,
1

2
; 1; a, b, c

)
=

1

π

1∫
0

t−1/2(1 − t)−1/2(1 − at)−1 (1 − bt)−1/2 (1 − ct)−1/2 dt.

(3.3.17)

Hence, the final expression for the integral along CA yields∫
CA

Υ(ω)dω =
1

2

√
ω1ω2ω4

d1,3d2,3ω3

FD

(
1

2
, 1,

1

2
,
1

2
; 1;

d3,4

ω3

,−d3,4

d1,3

,−d3,4

d2,3

)
. (3.3.18)

It can be shown that the integral along the descending path CD is equal to (3.3.18). There-

fore, the final expression for Pr {D < 0} is given by

Pr {D < 0} =

√
ω1ω2ω4

d1,3d2,3ω3

FD

(
1

2
, 1,

1

2
,
1

2
; 1;

d3,4

ω3

,−d3,4

d1,3

,−d3,4

d2,3

)
. (3.3.19)

3.3.3 Approximate expressions

Approximation 1

Let the Lauricella function be expressed in integral form of Euler type [32] as

FD(a, {bi}3
i=1 ; c; {xi}3

i=1) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0

ta−1(1 − t)c−a−1
3

Π
i=1

(1 − xit)
−bidt, (3.3.20)

where Γ(·) is the Gamma function. According to the definitions in subsection 3.3.2, the ωi

can be grouped into pairs Ω1,2 � {ω1, ω2} and Ω3,4 � {ω3, ω4}. Hence, it holds that

{di,j /ωi, ωj ∈ Ωi,j} ⇒ |di,j| << |ωk|, k ∈ {1, . . . , 4}, (3.3.21)

{di,j, dl,m /ωi · ωj > 0, ωl · ωm < 0} ⇒ |dl,m| >> |di,j|. (3.3.22)

With these considerations, we have d1,3 ≈ d2,3 and hence x2 ≈ x3 = x. Thus, the

following relationship between Lauricella function and Appell hypergeometric function can
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be found from (3.3.20), as

FD(
1

2
, 1,

1

2
,
1

2
; 1; x1, x, x) ≡ F1(

1

2
, 1, 1; 1; x1, x). (3.3.23)

Hence, the probability Pr {D < 0} can be approximated by the following closed-form

expression

Pr {D < 0} ≈
√

ω1ω2ω4

d1,3d2,3ω3

F1

(
1

2
, 1, 1; 1;

d3,4

ω3

,
d3,4

d̄

)
, (3.3.24)

where F1(·) is the Appell hypergeometric function, and d̄ � d1,3+d2,3

2
.

Approximation 2

From (3.3.21) and (3.3.22), it is easy to see that |ω3| << |d1,3| and |d3,4| <<< |d1,3|, respec-

tively. Hence, it can be expected that x → 0 in (3.3.24). Using some of the relationships

given in [33, eq. 9.121], it yields

F1(
1

2
, 1, 1; 1; x1, x → 0) ≈ 1√

1 − x1

. (3.3.25)

Finally, after some algebra it is easy to obtain the following approximate expression

Pr {D < 0} ≈
√

ω1ω2

ω3 − ω1+ω2

2

. (3.3.26)

3.4 Discussion

In this chapter, relevant expressions for the calculation of the probability of a general

quadratic form D in complex Gaussian random variables to be less than zero are presented.

Of special interest is the analysis of quadratic forms in non-circularly symmetric complex

RVs, which had not been previously accomplished in the literature.

For the particular case of circularly symmetric RVs with arbitrary mean, an exact closed-

form expression for this probability (3.2.7) is given in [6, 10], and an approximate closed-

form expression (3.2.10) is proposed in this thesis. When non circularly symmetric RVs with

zero mean are considered, exact (3.3.19) and approximate (3.3.24, 3.3.26) expressions are

calculated here.
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These results, in conjunction with the general framework presented in chapter 2, will be

used in this thesis for the BER calculation in different scenarios using a common procedure.

The main contributions in this chapter have been published in [19, 21] and [22].
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Chapter 4

Analysis of MIMO systems in Ricean
Fading

I
N this chapter, we use the general framework presented in chapter 2 and the mathemat-

ical results introduced in chapter 3 to perform a BER analysis of QAM systems with

multiple antennas affected by Ricean fading, in the presence of different impairments: first, a

QAM system with MRC reception is analyzed, when Ricean-faded interferences and ICSI are

considered. Then, a MIMO system employing Alamouti transmit diversity in conjunction

with MRC reception and ICSI is investigated.

4.1 MRC reception with Ricean Interferences

4.1.1 Related Work

In the previous sections, we have presented a general framework which enables the analysis

of QAM based systems as well as a method for calculating probabilities in scenarios where

the decision variable may be expressed in terms of a general quadratic form in complex

Gaussian RVs. Here, we illustrate the applicability of these tools to derive an exact closed-

form expression for the BER of a QAM system when MRC diversity is used in Ricean fading

channels with Ricean interference, under channel estimation errors. In this scenario, the

PDF of the equivalent noise is not circularly symmetric with respect to zero, since its mean

is different to zero due to the line-of-sight (LOS) component of the interfering signal.
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Some authors have dealt with the analysis of QAM-based systems in the presence of in-

terferences: In [34], the outage probability is calculated for some antenna reception strategies

in the presence of interfering signals with arbitrary average powers, under different fading

scenarios. For BPSK constellation, closed-form expressions for the BER are obtained in the

case of Rayleigh [35, 36] and Ricean faded co-channel interference [37]. Particularly, the

results in [37] were not exact since a saddlepoint approximation was considered. Therefore,

a general BER analysis for QAM systems in the presence of Ricean-faded interferences has

not been accomplished in the literature in exact closed-form, to the best of our knowledge.

In the investigated scenario, the signal of interest (SOI) is a generic QAM signal with

independent bit-mapping, whereas the interferences may belong to any bidimensional con-

stellation. Ricean fading is considered both for the SOI and interfering signals, with arbitrary

average power, arbitrary Rice K parameter and equal scattering power, and MRC reception

with ICSI is assumed. We obtain an exact closed-form expression for the BER in this gen-

eral scenario. Additionally, we calculate a closed-form expression for a simplified scenario of

interest, like PCSI in the presence of Rayleigh faded interferences, which provides a better

insight into the problem.

4.1.2 System Model

Let us denote the received signal on the k-th branch as

rk = gkz + hkρi + wk, (4.1.1)

where z is the transmitted symbol belonging to a M -QAM constellation, gk and hk are

complex Gaussian random variables with means mgk
, mhk

and variances σ2
g , σ2

h respectively,

ρi is the interfering symbol belonging to a set S and wk is AWGN with zero mean and

variance σ2
w. For the sake of simplicity, yet without loss of generality, we consider one

interfering signal per branch. However, the same analysis can be performed for an arbitrary

number of interfering signals per branch.

When MRC is performed at the receiver, the decision metric y can be expressed as

y =

NR∑
k=1

ĝ∗
krk

|ĝ|2 =

NR∑
k=1

ĝ∗
kgk

|ĝ|2 z +

NR∑
k=1

ĝ∗
k(hkρi + wk)

|ĝ|2 , (4.1.2)
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where NR is the number of diversity branches at the receiver side and ĝ is the channel

estimation vector. We denote the components of ĝ as ĝk = gk +ψk, where ψk is the Gaussian

error in channel estimation with zero-mean and variance σ2
ψ [38]. Thus, according to the

canonical form y = az + ζ given in 2.2.1, we can use the general expression (2.2.7) for the

BER.

4.1.3 BER analysis

Exact analysis

BER calculation in this scenario is performed as follows: first, we calculate the CEPs condi-

tioned to a certain interfering symbol ρi, and then we average this conditional probability for

all the possible interfering symbols. Finally, we compute the elementary coefficients α±
u (k)

and β±
u (k) in order to obtain the final BER expression.

In this scenario the PDF of the equivalent noise is not circularly symmetric with respect to

zero. Therefore, we have to calculate separately the probabilities for the I and Q components.

The conditioned CEPs to be calculated are I±
u,v(m|ρi) and Q±

u,v(m|ρi). Then, the final CEPs

are obtained averaging the conditional CEPs over the entire set S of interfering symbols

I±
u,v(m) =

∑
∀ρ∈S

I±
u,v(m|ρi), Q±

u,v(m) =
∑
∀ρ∈S

Q±
u,v(m|ρi). (4.1.3)

Let us define a random variable D as a quadratic form as follows

D(Ql) � Dl =

NR∑
k=1

xH
k Qlxk. (4.1.4)

The quadratic form matrix Ql and the random variable vector xk are defined as

xk �
[

rk

ĝk

]
Ql �

[
0 1

2
ej π

2
l

1
2
e−j π

2
l B(m)

]
, (4.1.5)

where l � {0, 1, 2, 3} is used to index the CEPs
{I−

u,v(m|ρi),Q−
u,v(m|ρi), I+

u,v(m|ρi),Q+
u,v(m|ρi)

}
to be calculated, respectively, and B(m) are the decision boundaries defined in Section 2.2,

whose sign is coincident with the sign of the considered CEP.

The calculation of Pl � Pr {Dl < 0} can be tackled through Proakis’ analysis of complex

Gaussian quadratic forms [6, eq. B-21], or using the alternative expression given in (3.2.7)
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and Table 3.1. Thus, if we expand (4.1.4) and (4.1.5), we have

Pl = Pr

{
NR∑
k=1

[
1

2
rkĝ

∗
ke

−j π
2
l +

1

2
r∗kĝke

j π
2
l+ |ĝk|2 B(m)

]
< 0

}
. (4.1.6)

For the different values of l index, we identify the relationship between (4.1.6) and the CEPs

as
P0 = Pr {D0 < 0} = I−

u,v(m|ρi), P1 = Pr {D1 < 0} = Q−
u,v(m|ρi),

P2 = Pr {D2 < 0} = I+
u,v(m|ρi), P3 = Pr {D3 < 0} = Q+

u,v(m|ρi).
(4.1.7)

The mean vector mk � E {xk} and the covariance matrix R � E
{
(xk − mk)(x

H
k − mH

k )
}

are expressed, after some calculations, as

mk =

[
mgk

su,v + mhk
ρi

mgk

]
,

R =

[
σ2

g |su,v|2 + σ2
h |ρi|2 + σ2

w (σ2
g − σ2

ψ)su,v

(σ2
g − σ2

ψ)s∗u,v σ2
g − σ2

ψ

]
.

(4.1.8)

Once mk and R are known, the parameters ηl, al and bl are calculated using the expres-

sions in Table 3.1, for a certain Ql. Finally, the value of Pl is given by

Pl =

NR−1∑
m=0

Cm(al, bl, ηl)Im(albl) exp

{
−1

2
(a2

l + b2
l )

}
+ Q1(al, bl), (4.1.9)

where Q1(a, b) is the first order Marcum Q function, Im(x) is the m-th order modified Bessel

function of first kind, and Cm(a, b, c) is defined in Table 3.1. We calculate the final expression

by substituting in (2.2.7), thus obtaining the exact closed-form BER expression as

BERQAM =
1

M log2(M)

L∑
u=1

L∑
v=1

∑
∀ρ∈S

{
u−1∑
n=1

α−
u (n)

[
Q1(a0, b0) +

NR−1∑
m=0

Cm(a0, b0, η0)Im(a0b0) exp
{−1

2
(a2

0 + b2
0)
}]

+

L−1∑
n=u

α+
u (n)

[
Q1(a2, b2) +

NR−1∑
m=0

Cm(a2, b2, η2)Im(a2b2) exp
{−1

2
(a2

2 + b2
2)
}]

+

v−1∑
n=1

β−
v (n)

[
Q1(a1, b1) +

NR−1∑
m=0

Cm(a1, b1, η1)Im(a1b1) exp
{−1

2
(a2

1 + b2
1)
}]

+

L−1∑
n=v

β+
v (n)

[
Q1(a3, b3) +

NR−1∑
m=0

Cm(a3, b3, η3)Im(a3b3) exp
{−1

2
(a2

3 + b2
3)
}] }

.

(4.1.10)
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Note that al, bl and ηl coefficients also depend on u and v, although this dependence

has been omitted for notational simplicity. In the case of considering Gray mapping, the

elementary coefficients α±
u (n) and β±

v (n) are calculated from (2.2.6) and (2.3.8). Otherwise,

they may be calculated following the procedure described in Section 2.3.1.

Although the exact BER expression in (4.1.10) is easily computed with Matlab or other

mathematical tools, the provision of a good insight into the system performance is not

obvious. However, it is possible to simplify this expression by means of asymptotic analysis

as in [39].

Approximate analysis: Strong LOS, PCSI and Rayleigh-faded interferences.

Let us consider PCSI (i.e. ĝ = g) at the receiver side, and let us assume a line of sight

(LOS) component only for the SOI. Therefore, a Rayleigh fading channel (i.e. mhk
= 0) is

considered for the interfering signals. In this scenario, we observe no gain mismatch and an

equivalent noise with circularly symmetric PDF. Hence, this situation is coincident with the

particular scenario considered in Section 2.2.3, and only the calculation of I+(n|ρi) CEP is

required. If we define

cn =
σ2

g

σ2
w + σ2

h |ρi|2
· 3ES(2n − 1)

2(M − 1)
, (4.1.11)

where ES is the transmitted constellation energy, we can express after some algebra

an =

(
1

2
− 1

2

√
cn

cn + 1

)√
2NRKSOI ;

bn =

(
1

2
+

1

2

√
cn

cn + 1

)√
2NRKSOI ,

(4.1.12)

where KSOI = 10 log(|mgk|2/σ2
g) is the Ricean K factor for the SOI. From (4.1.12), it is clear

that an, bn → ∞ when KSOI → ∞, and bn > an. Hence, it is shown in (3.2.10) that

I+(n|ρi) ≈ Tn · Q
(√

cn

cn + 1
2NRKSOI

)
, (4.1.13)

where

Tn =
√

ηn +
√

4cn

NR−1∑
m=0

Cm(ηn), (4.1.14)

and ηn = bn/an = 1 + 2cn + 2
√

cn(cn + 1).

37



4.1. MRC RECEPTION WITH RICEAN INTERFERENCES

Taking into account that the α±
u , β±

v coefficients can be grouped attending to expression

(2.2.25), the closed-form expression for the BER is given by

Pe =
∑
∀ρ∈S

L−1∑
n=1

Tn · ω(n) · Q
(√

cn

cn + 1
2NRKSOI

)
. (4.1.15)

4.1.4 Numerical Results

We use the closed-form expressions obtained in Section 4.1.3 to evaluate the BER in different

scenarios. Gray mapping is considered for QAM constellations. As in [40], we consider the

interfering signal ρi belonging to a square M -QAM constellation, with the same M value that

the SOI and E[|ρi|2] = 1. For the sake of simplicity, we assume equal mean for the Ricean

channel and interferences for all the reception branches, i.e. mgk
= mg, mhk

= mh; ∀k.

We denote the signal-to-interference ratio (SIR) as γI = ES/EI , where EI = σ2
h + |mh|2

is the energy of the interfering signal. Similarly, we denote the signal-to-channel estimation

error ratio (SCER) as γCE = ES/σ2
ψ and the signal to noise ratio (SNR) as γN = ES/σ2

w.

We define the Ricean K factor for the interference as KI = 10 log(|mh|2/σ2
h).

Evaluation of exact expression

Fig. 4.1 illustrates the BER performance according to expression (4.1.10) as a function of

γI , for different constellations (16/64-QAM) and different number of reception branches NR.

The SOI and the interference are affected by Ricean fading with KSOI=10 dB and KI=0 dB,

respectively. The remainder parameters are γN=20 dB and γCE=20 dB.

It is seen that the Monte Carlo simulations and the analytical results are in excellent

agreement. As expected, BER performance is improved as the number of reception branches

NR is increased, and when the constellation size M is reduced. It is interesting to highlight

the appearance of an irreducible floor in the BER, for high SIR values. This floor is due to

the noise as well as to ICSI, when either SCER or SNR values become comparable to the

current SIR.

For convenience of discussion, we will particularize the following results for the case of an

interference-limited system, which corresponds to a typical case of wireless cellular systems
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Figure 4.1: BER vs SIR, for different number of reception branches NR, 16/64-QAM con-
stellations, γN=γCE=20 dB, KSOI=10 dB, KI=0 dB.

(i.e γN → ∞). Besides, we will consider PCSI (i.e. γCE → ∞) in order to avoid the

appearance of an error floor due to ICSI.

In Figures 4.2 to 4.5, the influence of every single parameter of the system in the BER is

studied, when the rest of the parameters remain unchanged. Fig. 4.2 shows the BER results

for different values of KI factor.

It is interesting to observe that for low SIR values, the LOS component of the interference

provokes the received symbol to be shifted beyond the correct decision boundaries. Since

the magnitude of this shift grows with KI , we appreciate that the BER grows with KI value.

On the opposite, when the SIR is very low the received symbol is likely to be shifted beyond

more than just one boundary. Hence, we can have more than one erroneous bit per symbol.

In this case, we appreciate that the BER decays with KI value due to the effect of the NLOS

component of the interference. Finally, for high SIR values it is observed that the BER is

increased when KI decreases.

Fig. 4.3 shows the BER performance for different values of KSOI factor, when KI=0 dB,

16-QAM constellation and NR = 2 reception branches are considered. The same assumptions
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4.1. MRC RECEPTION WITH RICEAN INTERFERENCES

Figure 4.2: BER vs SIR, for different values of interference Ricean KI factor, NR=2, 16-QAM
constellation, PCSI, γN → ∞, KSOI=10 dB.

about channel estimation error and noise that in Fig. 4.2 are taken. As expected, better

values of BER correspond with greater values of KSOI factor, i.e. a stronger LOS component.

The effect of SNR is studied in Fig. 4.4. Simulation parameters in this case are 16-

QAM constellation, NR = 2 reception branches, PCSI, KSOI =10 dB and KI =0 dB. We

observe the appearance of an error floor in the BER for those ranges of γI comparable to the

fixed γN values. In this case, the noise dominates the interference so that the assumption

of interference-limited system becomes invalid. When the SIR is much lower than the SNR

(e.g. γN=30 dB), the BER is very close to the γN → ∞ scenario.

Now, the influence of an imperfect channel estimation is showed in Fig. 4.5, when 16-

QAM constellation, NR = 2 reception branches, KSOI=10 dB and KI=0 dB are assumed.

Similarly to Fig. 4.4, an error floor in the BER is appreciated when the SCER and SIR are

of similar magnitudes.
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Figure 4.3: BER vs SIR, for different values of SOI Ricean KSOI factor, NR=2, 16-QAM
constellation, PCSI, γN → ∞, KI=0 dB.

Figure 4.4: BER vs SIR, for different values of SNR, NR=2, 16-QAM constellation, PCSI,
KI= 0 dB, KSOI= 10 dB.
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Figure 4.5: BER vs SIR, for different values of SCER, NR=2, 16-QAM constellation, γN →
∞, KI=0 dB, KSOI=10 dB.

Evaluation of approximate expression

Once the BER results for the general scenario of Ricean fading channel in the presence of

Ricean-faded interferences with ICSI and MRC reception have been presented (according

to expression (4.1.10)), we will focus on the particular case of Rayleigh-faded interferences,

when PCSI is considered. In this scenario, we provide a simplified closed-form expression in

(4.1.15), with the only assumption of a strong LOS component for the SOI.

Fig. 4.6 shows the exact and approximate BER given by (4.1.15), for different values

of KSOI and constellation sizes. We observe an excellent match between the approximate

and exact curves, either for 16 and 64-QAM constellations, for values of KSOI in the range

of 10 dB. It is observed that as the relative power of the LOS component is increased, the

accuracy of the approximation is also improved.

Finally, Fig. 4.7 shows the BER performance in the Rayleigh-faded interference scenario,

for different number of reception branches NR and constellation sizes, when no noise influence

and KSOI =10 dB are considered. The approximate expression provides an accurate BER

value for the different configurations of constellation sizes and number of receive antennas.
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Figure 4.6: BER vs SIR (exact and approximate) for different values of SOI Ricean KSOI-
factor, NR=2, 16/64-QAM constellations, γN =→ ∞, PCSI and Rayleigh-faded interference.

Figure 4.7: BER vs SIR (exact and approximate) for different reception branches NR,
KSOI= 10 dB, 16/64-QAM constellations, γN =→ ∞, PCSI and Rayleigh-faded interfer-
ence.
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4.1.5 Discussion

We have illustrated the applicability of the proposed analysis method for the exact closed-

form BER calculation in a M -QAM system with MRC reception in Ricean fading channel

and Ricean-faded interferences, when imperfect channel estimation is considered. Besides,

we also propose an approximate closed-form expression for the particular case of Rayleigh-

faded interferences and perfect channel estimation, in terms of a weighted sum of elementary

Gaussian Q functions. This approximate expression is valid for strong LOS scenarios in our

particular case, although may be used in other scenarios involving Gaussian quadratic forms.

Numerical results show how imperfect channel estimation leads to an irreducible BER

floor. This error floor is also to appear when SNR and SIR have similar values. It is

appreciated that the effect of KI value on the BER varies depending of the magnitude of

the SIR. We can also observe a very good match between the exact closed-form and the

approximate expression when a strong LOS component is considered.

The main contributions in this section have been published in [19].

4.2 Alamouti transmission with MRC reception

4.2.1 Related Work

The use of multiple antennas for transmission or reception, usually referred to as multiple-

input multiple-output (MIMO), is nowadays an extended strategy for improving the capacity

and coverage in wireless communication systems. One of the simpler MIMO configurations

relies on the use of space time block codes (STBCs), since they do not require the knowledge

of channel state information (CSI) at the transmitter side.

Alamouti [41] proposed a coding scheme for two transmit antennas, which was demon-

strated to provide full diversity order when perfect CSI is available at the receiver side. This

technique has been incorporated in many wireless communication standards such as IEEE

802.11, 802.16 and 3GPP-LTE, and it also has recently been considered for cooperative

transmission [42, 43]. The performance of Alamouti’s like schemes has widely been analyzed

by many authors, in different scenarios and configuration. Most analyses in the literature
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however assume perfect CSI at the receiver side [42–47].

It is known that the effect of imperfect CSI (ICSI) at the receiver side results in a

performance degradation of Alamouti’s scheme [48]. The effect of ICSI has also been analyzed

in [49–52], when Rayleigh fading is considered. However, to the best of author’s knowledge,

analytical results for Alamouti’s transmission schemes impaired by ICSI in Ricean fading

channels are largely unknown.

In this section, we present an exact closed-form BER analysis of a MIMO system that

employs Alamouti transmission in conjunction with MRC reception with NR receive anten-

nas in a Ricean fading channel, when ICSI is considered, for a generic M -ary quadrature

amplitude modulation (QAM) constellation. An approximate expression is also obtained

for the case of a strong line of sight (LOS) path, in terms of the Gaussian Q function. We

demonstrate that the investigated scenario can be reduced to an equivalent 1 × 2NR MRC

reception scheme, where the equivalent noise term is affected by the loss of orthogonality

of Alamouti’s code due to ICSI. The final expressions are used to study how the different

parameters (e.g., number of receive antennas, constellation size, channel estimation error,

Ricean K factor) affect the BER performance, and to evaluate the degradation compared to

a conventional 1 × 2NR MRC reception [9].

The remainder of this section is organized as follows: In (4.2.2), it is presented the sys-

tem model considered in our analysis: M -QAM modulation, Alamouti transmission, MRC

reception with ICSI and Ricean fading channel. Then (4.2.3), the exact and approximate

closed-form expressions for the BER in this scenario are calculated. Numerical results are

given in (4.2.4) in order to determine how the different parameters affect the BER perfor-

mance. Finally, main conclusions are presented in (4.2.5).

4.2.2 System Model

We consider a MIMO 2×NR system, where Alamouti scheme is applied at the transmitter,

and MRC with NR antennas is performed at the receiver. During two consecutive symbol

intervals, the symbols z1 and z2 belonging to a square M -QAM constellation are transmitted

according to the block code described in [41]. The set of complex symbols is SM � {su,v =
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(2u − √
M − 1)d + j(2v −√

M − 1)d}u=1...
√

M ;v=1...
√

M , where 2d is the minimum distance

between symbols, and independent bit mapping is assumed for in-phase (I) and quadrature

(Q) components.

The received signals in the i-th reception branch, during two consecutive symbol intervals,

can be expressed as

r1,i = g1,iz1 + g2,iz2 + w1,i, (4.2.1)

r2,i = −g1,iz
∗
2 + g2,iz

∗
1 + w2,i, (4.2.2)

where ∗ denotes complex conjugation, {gj,i}j=1,2;i=1...NR
is the complex channel gain between

the j-th transmit antenna and the i-th receive antenna, and {wj,i}j=1,2;i=1...NR
denote the

additive white Gaussian noise (AWGN) terms. We assume that {gj,i} are independent com-

plex random variables (RVs) with mgj,i
mean and σ2

g variance, i.e., gj,i ∼ CN(mgj,i
, σ2

g), where

∼ means “statistically distributed as”, and wj,i ∼ CN(0, σ2
w). After using the combination

method given in [41], the decision metrics along the block code interval in the i-th reception

branch can be expressed as:

y1,i = ĝ∗
1,ir1,i + ĝ2,ir

∗
2,i, (4.2.3)

y2,i = ĝ∗
2,ir1,i − ĝ1,ir

∗
2,i, (4.2.4)

where ĝj,i = gj,i + ψj,i denotes the estimate of the channel gain, and ψj,i ∼ CN(0, σ2
ψ)

represents the channel estimation error according to the channel model proposed in [38]

(i.e., E[ĝj,iψ
∗
j,i] = 0). Finally, the decision metrics per receive branch are combined using

MRC, providing the final j-th decision metrics as

yj =

NR∑
i=1

yj,i

NR∑
i=1

(|ĝ1,i|2 + |ĝ2,i|2
) . (4.2.5)

4.2.3 BER analysis

Exact analysis

Due to the existing symmetry in the decision metrics in (4.2.5), it is equivalent to calculate

the BER for z1 and z2 symbols. Hence, in the following we focus our analysis on z1 symbol.
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Let us express the BER as the average, over all the transmitted z1 and z2 symbols, of a

weighted sum of components of error probability

BER =
1

M

∑
∀su,v ,su′,v′∈SM

√
M−1∑
n=u

ωu(n)Iu,v,u′,v′(n), (4.2.6)

where the coefficients ωu(n) are given in (2.2.19), and Iu,v,u′,v′(n) is defined as the component

of error probability conditioned on a particular value of z1 and z2, i.e.,

Iu,v,u′,v′(n) = Pr
{
�{y1 − B(n)} > 0| z1=su,v ,z2=su′,v′

}
(4.2.7)

where B(n) = (2n −√
M)d are the decision boundaries for the M -QAM constellation.

Expanding (4.2.5), and after some algebra, Iu,v,u′,v′(n) can be expressed as

Iu,v,u′,v′(n) = Pr

{ NR∑
i=1

{(|ĝ1,i|2 + |ĝ2,i|2
)� (su,v − B(n))

+�{ĝ∗
1,iη1,i

}
+ �{ĝ2,iη

∗
2,i

}}
> 0

}
,

(4.2.8)

where {ηj,i} are the equivalent noise terms defined as

η1,i = (w1,i − Ψ1,isu,v − Ψ2,isu′,v′) , (4.2.9)

η2,i =
(
w2,i + Ψ1,is

∗
u′,v′ − Ψ2,is

∗
u,v

)
. (4.2.10)

Note that although {ηj,i} depend on Ψ1,i and Ψ2,i, it can be shown that η1,i and η2,i are

independent zero-mean complex Gaussian RVs with equal variance. Hence, we can express

(4.2.8) compactly by redefining the sum indices as

Iu,v,u′,v′(n) = Pr

{
2NR∑
k=1

{
|ĝk|2� (B(n) − su,v) − 1

2
ĝ∗

kηk − 1

2
ĝkη

∗
k

}
< 0

}
, (4.2.11)

where k = 1, . . . , NR represents {j = 1, i = 1, . . . , NR}, and k = NR + 1, . . . , 2NR represents

{j = 2, i = 1, . . . , NR}. The term ηk ∼ CN
(
0, σ2

w + σ2
ψ

(|su,v|2 + |su′,v′|2)) accounts for the

joint effect of noise and block code interference due to ICSI.

This expression (4.2.11) can be seen as a particular case of quadratic form D =
2NR∑
k=1

xH
k Qxk,

where H denotes complex conjugate transpose operation, and the quadratic form matrix Q
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and the random variable vector xk are defined as

xk �
[

ĝk

ηk

]
, Q �

[
B(n) −�{su,v} −1

2

−1
2

0

]
. (4.2.12)

Hence, in this scenario, the calculation of Pr {D < 0} can be performed either using anal-

ysis of complex Gaussian quadratic forms [6, eq. B-21], or the alternative expression (3.2.7).

If the mean vector mk � E {xk} and the covariance matrix R � E
{
(xk − mk)(x

H
k − mH

k )
}

are calculated as

mk =

[
mgk

0

]
, R =

[
σ2

g − σ2
ψ 0

0 σ2
w + σ2

ψ

(|su,v|2 + |su′,v′|2)
]

, (4.2.13)

the component of error probability (4.2.7) can be expressed in exact closed-form as

Iu,v,u′,v′(n) =Q1(μ, λμ) +

2NR−1∑
m=0

Cm(λ)Im(λμ2) exp

{
−μ2

2
(1 + λ2)

}
, (4.2.14)

where Q1(a, b) is the first order Marcum Q function, Im(x) is the m-th order modified Bessel

function of first kind, and λ, μ, and Cm(λ) are defined in Table 4.1. Note that λ and μ

also depend on u, v, u′, v′ and n indices, although it is not explicitly stated for notational

simplicity.

Finally, the exact expression for the BER is given in closed-form by

BER =
1

M

∑
∀su,v ,su′,v′∈SM

√
M−1∑
n=u

ωu(n)×
(

Q1(μ, λμ) +

2NR−1∑
m=0

Cm(λ)Im(λμ2) exp

{
−μ2

2
(1 + λ2)

})
.

(4.2.15)

After some algebra, we can find a simple expression for κ (and hence, for λ) and μ as

μ =
1

λ + 1

√(
1 − σ2

ψ

σ2
g

)−1

4NRK̄, (4.2.16)

κ =

(
σ2

g − σ2
ψ

)� (su,v − B(n))2(
σ2

w + σ2
ψ

(|su,v|2 + |su′,v′|2)) , (4.2.17)

where K̄ = 1
2NR

2NR∑
k=1

|mgk|2
σ2

g
is the average Ricean K factor, which accounts for the power ratio

between the LOS and non-LOS components of the channel gain, and κ is defined in Table

4.1.
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Table 4.1: Probability computation of Gaussian quadratic form.

Functions and Definitions

Parameters

κ
∣∣∣ tr(RQ)2

4 det(RQ)

∣∣∣
λ 1 + 2κ + 2

√
κ (κ + 1)

μ 1
λ+1

√
2

2NR∑
k=1

mH
k mk

utRu
, ut � [1, 0].

Cm(λ)

⎧⎪⎪⎨
⎪⎪⎩

−1 + 1

(1+λ)4NR−1

2NR−1∑
k=0

(
4NR − 1

k

)
λk , m = 0

1

(1+λ)4NR−1

2NR−1−m∑
k=0

(
4NR − 1

k

)[
λm+k − λ4NR−1−k−m

l

]
, m �= 0

The derived closed-form expression (4.2.15) for the BER is exact. However, it is possible

to provide a simpler approximate expression for a particular scenario of interest by means

of asymptotic analysis.

Approximate analysis: Strong LOS component.

From (4.2.16), it is noted that the arguments in Marcum Q function are directly proportional

to
√

K̄, i.e., μ = α
√

K̄. Hence, assuming K̄ → ∞ (due to a strong LOS component), we can

use the Marcum Q function approximation in terms of the Gaussian Q function [5] given by

Q1(μ, λμ) ≈
√

λQ
(
(λ − 1) α

√
K̄
)

, K̄ → ∞. (4.2.18)

Otherwise, the m-th order Bessel functions of first kind are approximated by exponentials

when its argument tends to infinity as

Im(α2λK̄) ∼ exp{α2λK̄}
α
√

2πλK̄
, K̄ → ∞. (4.2.19)

This latter approximation, combined with the asymptotic relation for the Gaussian Q
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function given by

exp {− (λ−1)2αK̄
2

}√
2πK̄ (λ − 1) α

≈ Q((λ − 1) α2
√

K̄), K̄ → ∞, (4.2.20)

leads to an approximate expression for the component of error probability (4.2.7) in terms

of the Gaussian Q function

Iu,v,u′,v′(n) ≈ Cq(n)Q

⎛
⎝
√

κ

κ + 1

(
1 − σ2

ψ

σ2
g

)−1

4NRK̄

⎞
⎠ , (4.2.21)

where Cq(n) coefficients are calculated as

Cq(n) �
√

λ +
λ − 1√

λ

2NR−1∑
m=0

Cm(λ). (4.2.22)

Substituting (4.2.17) into (4.2.21), the CEP can be finally expressed as

Iu,v,u′,v′(n) ≈ Cq(n)Q

(√
4NRK̄

Γ−1
NI + 1 − Γ−1

ψ

)
, (4.2.23)

where the ΓNI and Γψ are defined as

ΓNI =
σ2

g� (su,v − B(n))2

σ2
w + σ2

ψ

(|su,v|2 + |su′,v′|2) , (4.2.24)

Γψ =
σ2

g

σ2
ψ

. (4.2.25)

From (4.2.24), it is easy to see that ΓNI depends on u, v, u′, v′ and n, although this depen-

dence has been omitted for notational simplicity. Finally, the approximate BER expression

for K̄ → ∞ is obtained as

BER(K̄→∞) ≈
1

M

∑
∀su,v ,su′,v′∈SM

√
M−1∑
n=u

ωu(n)Cq(n)Q

(√
4NRK̄

Γ−1
NI + 1 − Γ−1

ψ

)
. (4.2.26)

4.2.4 Numerical Results

In this section, we evaluate how the BER is affected by the variation of the parameters in

our system model. For simplicity, equal mean for the Ricean channel for all the k branches is

assumed, i.e., mgk
= mg, ∀k. Besides, Gray mapping is considered for QAM constellations.
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The signal-to-noise ratio (SNR) is defined as γ = ES/σ2
w, where ES is the average trans-

mitted symbol energy. In a similar way, we denote the signal-to-channel estimation error

ratio (SCER) as γψ = ES/σ2
ψ. We also define the Ricean K factor as K = 10 log(|mg|2/σ2

g).

Evaluation of exact expression

Fig. 4.8 illustrates the BER performance as function of γ, for different values of Ricean K

factor and number of reception branches NR. 4-QAM modulation is considered, and the

channel estimation error is set to γψ = 20dB. It is observed that a stronger LOS component

results in a better BER performance. Similarly, it is appreciated that BER performance is

improved when the number of reception branches NR is increased. It is seen that the Monte

Carlo simulations and the analytical results are in excellent agreement.

Figure 4.8: BER vs SNR for different values of Ricean K factor and number of reception
branches NR, 4-QAM constellation and γψ = 20dB.

In Fig. 4.9, the BER for different constellation sizes and channel estimation error values

γψ is evaluated. Two reception branches and a K = 5dB Ricean factor are assumed. As

expected, more dense constellations are more sensitive to channel estimation error. For 64-

QAM, the minimum achievable BER is worse than 10−3 for the considered values of γψ, due

to the effect of ICSI.
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Figure 4.9: BER vs SNR for different values of γψ and constellation sizes, K = 5dB Ricean
factor and NR = 2 reception branches.

Fig. 4.10 represents the BER as a function of γψ, considering 16-QAM modulation,

two reception branches, and different SNR constraints and K values. When the channel

estimation error is under 10 − 12dB, the BER performance is very similar and independent

of the value of K.

It is observed that in the presence of a strong LOS component (K = 5dB), the BER

performance (γ = 20dB) for high values of γψ is under 10−6, whereas it is over 10−5 when

non-LOS is considered (i.e., Rayleigh channel). In the case of γ → ∞, the BER values

represent the irreducible BER floor due to ICSI.

In Fig. 4.11, the BER performance of the 2×NR Alamouti-MRC scheme is compared to

a conventional 1× 2NR MRC system [9], in the presence of ICSI. It is appreciated that both

systems have equal BER performance when perfect CSI is considered. However, Alamouti-

MRC scheme suffers a more severe performance degradation due to the effect of ICSI, which

causes a noise enhancement through block code interference. When the channel estimate

becomes worse (i.e., lower values of γψ), the performance gap is reduced, since the channel

estimation error becomes the dominant factor in the BER, compared to equivalent noise.
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Figure 4.10: BER vs SCER for different values Ricean K factor and γ, NR=2 reception
branches and 16-QAM.

The different impact of ICSI in 2 × NR Alamouti-MRC and conventional 1× 2NR MRC

is also appreciated in Fig. 4.12, where the BER is evaluated as a function of γψ, for a fixed

value of SNR. In this figure, three different regions can be identified:

1. When the magnitude of the channel estimation error is considerable (i.e., low values of

γψ), both Alamouti-MRC and conventional MRC behave similarly, since the dominant

effect in the BER is the error in the channel estimation.

2. When the channel estimation error decreases (i.e., 15dB < γψ < γ), a performance gap

between Alamouti-MRC and conventional MRC is observed. This effect is provoked by

the block code interference due to ICSI that appears in Alamouti-MRC scheme, which

can be seen as an equivalent noise enhancement (see ηk term in Section 4.2.3). The

magnitude of this gap grows in the presence of a LOS component, as well as when the

number of receive antennas NR is increased.

3. Finally, when the SNR is the dominant factor compared to γψ (i.e., γψ > γ), both

schemes tend to behave similarly.
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Figure 4.11: Comparison of 2 × NR Alamouti-MRC and 1 × 2NR MRC. BER vs SNR for
different values of γψ, K = 5dB Ricean factor and 16-QAM.

Figure 4.12: Comparison of 2 × NR Alamouti-MRC and 1 × 2NR MRC. BER vs SCER for
different values of receive antennas NR and Ricean K factor, γ = 30dB and 16-QAM.
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Evaluation of approximate expression

The exact (4.2.15) and approximate (4.2.26) BER expressions are evaluated in Fig. 4.13,

for different combinations of Ricean K factor, and number of reception branches NR. It is

observed that the approximate and exact curves become more similar when NR and K are

increased. In fact, for values of K > 10dB the approximate expression provides an excellent

match with the exact BER values.

Figure 4.13: BER vs SNR (Exact and approximate) for different values of Ricean K factor
and number of reception branches NR, γψ = 16dB, 16-QAM.

4.2.5 Discussion

Closed-form BER expressions have been obtained for a MIMO 2×NR system that combines

Alamouti transmission and MRC reception in Ricean fading channels, when imperfect chan-

nel estimation is considered. The exact expression is given in terms of a finite sum of special

functions, which can be easily evaluated. Additionally, an approximate expression in terms

of Gaussian Q function is provided for strong LOS scenarios.

Results show that an appreciable performance gap between the investigated configuration

and the conventional 1×2NR MRC system is appeared due to the noise enhancement caused
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by block code interference. Ir is also appreciated that the magnitude of this performance

gap grows either when the diversity order is increased, or in the presence an stronger LOS

component.

The main contributions of this section have been published in [21].
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Chapter 5

Analysis of OFDM systems under RF
impairments

T
His chapter is devoted to the performance analysis of OFDM systems affected by dif-

ferent non idealities. Particularly, we focus on two major impairments associated with

direct conversion receivers (DCRs), which are being extensively used for the development of

low-cost integrated radio front-ends in wireless communication systems: the direct-current

(DC) offset and the in-phase/quadrature (IQ) imbalance.

First, we calculate an exact closed-form expression for the BER of OFDM systems with

direct conversion that employ MRC reception in multipath Rayleigh fading channels, using

binary phase-shift keying (BPSK) modulation. We assume a realistic system model where

DC offset, carrier frequency offset (CFO) and ICSI are simultaneously considered.

Then, we analyze the effect of the transmit and receive IQ imbalances in OFDM systems

that employ M -QAM modulation, when ICSI is considered in multipath Rayleigh fading

channels. Since in this scenario the equivalent channel gain is modelled as a non circularly

symmetric RV, the real and imaginary parts of the decision variable are not independent.

Hence, this aspect must be taken into account for a proper analysis.
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5.1 OFDM systems affected by DC-offset

5.1.1 Related Work

Direct conversion receivers have become the preferred solution for the implementation of

low-cost wireless radio frequency (RF) integrated circuits [53]. Unlike heterodyne receivers,

DCRs are not affected by image frequency problems, thus reducing the complexity in off-chip

components. Besides, RF front-end in DCRs is suitable for the implementation of multi-

standard software radios required in next generation wireless systems. However, DCRs are

known to be affected by direct current (DC) offset due to the non ideal behaviour of analog

components [54], among other impairments.

Most part of modern wireless communication systems use orthogonal frequency division

multiplexing (OFDM) as transmission technique, thanks to its inherent ability to compensate

the effects of multipath fading [55]. This performance is degraded in the presence of carrier

frequency offset (CFO), which may cause inter carrier interference (ICI). Since the CFO

compensation process requires a multiplication with a complex exponential, the DC offset

is spread over all the OFDM subcarriers [56]. Hence, every data subcarrier is affected by a

DC offset interference, whose value depends on the subcarrier index and the CFO.

Therefore, the CFO must be accurately estimated and compensated in the OFDM re-

ceiver. Although DC offset may affect the quality of CFO estimation through classical

correlation algorithms [57], there exist different mechanisms to accurately estimate the CFO

in the presence of DC offset [58, 59]. In many cases (e.g IEEE 802.16 [60], Long Term Evo-

lution (LTE) [61] and others), DC subcarrier is not used for data transmission in OFDM

systems since it is expected to be affected by DC offsets in the transceiver.

The analysis of non-ideal OFDM systems has been tackled in the literature from different

perspectives. The effect of ICI [62] in the BER was studied in [63] and [64], both assuming

perfect channel state information (PCSI). The effect of imperfect channel state information

(ICSI) on the performance of OFDM systems was incorporated in [15] and [65]. Less lit-

erature is available when residual DC offset is considered: In [66], a bit error rate (BER)

analysis of OFDM systems in the presence of DC offset and CFO under CLT approximation
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was accomplished, for the particular case of binary phase-shift keying (BPSK) modulation,

and was further extended to other modulation formats in [67]. However, the calculated ex-

pressions are not given in closed-form and assume PCSI in the receiver side, which is not a

realistic approach since the estimate of the channel frequency response may be affected by

the residual DC offset [68].

In this section, we derive an exact closed-form expression for the BER of a non-ideal

OFDM system with residual DC offset, CFO and ICSI, for an arbitrary number of receive

antennas and considering maximal ratio combining (MRC) reception. Therefore, the con-

tribution of this work may be summarized as: (1) the final BER expression is exact and is

given in closed-form, (2) the number of receive antennas is arbitrary, and (3) the effect of

ICSI is included in our analysis. Additionally, (4) we obtain a simple yet accurate expression

for the maximum allowable DC offset in a DCR, for a target signal-to-noise ratio (SNR).

5.1.2 System Model

Let us consider a discrete time OFDM system with NR reception branches. The received

baseband signal in the v-th branch yv[n] can be expressed as

yv[n] =
1√
N

N/2−1∑
m=−N/2

Hv,mXme
j2πn(m+ε)

N + ηv + wv[n], (5.1.1)

where N is the number of OFDM subcarriers, n = 0 . . . N − 1 is the discrete time index

of the OFDM symbol, Xm represents the BPSK symbol with energy Es transmitted at the

m-th OFDM subcarrier, ηv is the complex-valued DC offset, ε is the normalized CFO, wv[n]

is the additive white Gaussian noise (AWGN) with zero mean and σ2
w variance and Hv,m is

the channel frequency response at the m-th subcarrier for the v-th reception branch.

In this model, we assume the length of the channel impulse response to be less than the

cyclic prefix size and the Hv,m coefficients of the channel frequency response are complex

Gaussian RVs with zero mean and unity variance, independently distributed for every recep-

tion branch, i.e. E
{
Hv1,mH∗

v2,m

}
= 0,∀v1 �= v2, where E{·} denotes expectation operation.

We also consider ηv to remain invariant within one OFDM symbol.

After the cyclic prefix removal and CFO compensation, the OFDM received signal is
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passed back to frequency domain by means of a discrete Fourier transform (DFT). Mathe-

matically, this process results in

Yv,k = Hv,kXk + Wv,k + ηvζk(ε), (5.1.2)

where k = −N/2...N/2 − 1 is the subcarrier index, ζk(ε) =
√

N sinc(k+ε)

sinc( k+ε
N

)
e−jπ(k+ε)(N−1)/N ,

sinc(x) = sin(πx)
πx

, and Wv,k is the AWGN term.

In order to separate the effects of ICSI and ICI in our analysis, we assume perfect CFO es-

timation in the receiver side, which can be achieved considering the method proposed in [59].

However, the effect of ICI can be incorporated in our analysis through CLT approximation

as in [63] and [65–67, 69].

5.1.3 BER analysis

In this subsection, we calculate an exact closed-form expression for the BER of an OFDM-

MRC system impaired by DC-offset and ICSI, for an arbitrary number of receive antennas.

Then, we particularize our results for the case of single branch reception and PCSI, in order

to allow for a better insight into the effect of the DC-offset in the BER.

General case

When MRC is performed at the receiver, the decision metric rk can be expressed as

rk =

NR∑
v=1

(
Hv,kXkĤ

∗
v,k

||ĥ||2
+

(Wv,k + ηvζk(ε))Ĥ
∗
v,k

||ĥ||2
)

, (5.1.3)

where ĥ is the channel estimation vector. Following the channel model introduced in [38],

we denote the components of ĥ as Ĥv = Hv + ψv, where ψv is the Gaussian error in channel

estimation with zero mean and σ2
ψ variance, and ψv is independent of Ĥv. In this scenario,

the BER in the k-th subcarrier can be expressed as

Pk = Pr
{
�{rk} > 0|Xk = −

√
Es

}
. (5.1.4)

Let us define a random variable D as a quadratic form

D =

NR∑
v=1

xH
v,kQxv,k. (5.1.5)
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The quadratic form matrix Q and the random variable vector xv,k are defined as

xv,k �
[

Yv,k

Ĥv,k

]
, Q �

[
0 −1

2

−1
2

0

]
. (5.1.6)

If we expand (5.1.5) and (5.1.6), we have

Pk = Pr

{
NR∑
v=1

(
Yv,kĤ

∗
v,k + Y ∗

v,kĤv,k

)
< 0|Xk = −

√
Es

}
. (5.1.7)

The calculation of Pk can be tackled through Proakis’ analysis of complex Gaussian quadratic

forms [6, eq. B-21], or using the alternative expression given in (3.2.7). Here, the mean vector

mv,k � E {xv,k} and the covariance matrix R � E
{
(xv,k − mv,k)(x

H
v,k − mH

v,k)
}

yield

mv,k = ηvζk(ε)u,

R �
[

r11 r12

r21 r22

]
=

[
|Xk|2 + σ2

w (1 − σ2
ψ)Xk

(1 − σ2
ψ)X∗

k 1 − σ2
ψ

]
,

(5.1.8)

where ut = [1, 0]. According to the general expression (3.2.7), in this scenario we have

α � a = b. Hence, we can use the relationship between Marcum-Q function and the v − th

order modified Bessel function of the first kind Iv(x) given in [4, eq. 4.17]

Q1(α, α) =
1 + exp (−α2)I0(α

2)

2
, (5.1.9)

to express the BER in exact closed-form as

Pk=
1

2
+

NR−1∑
v=0

Cv(λ)Iv(η̄
2
εα

2) exp
[−η̄2

εα
2
]
, (5.1.10)

where η̄ε =
√

ΣNR
v=1|ηvζk(ε)|2, and λ, α and Cv(λ) are defined in Table 5.1.

After some algebra, we find an easy expression for λ and α in this scenario

α =
Γ√
2Es

, λ =
1+Γ

√
(1−σ2

ψ)

1−Γ
√

(1−σ2
ψ)

, (5.1.11)

where Γ =
√

γ̄
1+γ̄

, and γ̄ = Es/σ
2
w is the average SNR. From expression (5.1.10) it is appreci-

ated that the phase of ηv does not affect the BER, since Hk is a circularly symmetric random

variable. Interestingly, it is observed that the effect of DC offset, and ICSI are separated:

η̄ε term is only present in the argument of Iv(·) and exponential functions, whereas σ2
ψ only

affects the Cv(·) coefficients through λ.
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Table 5.1: Parameters and definitions for BER calculation.

Parameter Definition

λ

∣∣∣∣∣
(
tr(RQ)+

√
tr(RQ)2−4 det(RQ)

)
(
tr(RQ)−

√
tr(RQ)2−4 det(RQ)

)
∣∣∣∣∣

α
√

1
2

r22
tr(RQ)2−4 det(RQ)

Cv(λ)
K

(1 + λ)2NR−1

NR−1−v∑
l=0

(
2NR − 1

l

)[
λl − λ2NR−1−l

]
; K =

{
1/2, v = 0
1, v �= 0

Perfect CSI and single branch reception

Additional insights can be extracted for some scenarios of interest. In the particular case of

NR = 1 and PCSI, the BER can be expressed in the following compact form

Pk =
1

2

[
1 − ΓI0

(
Γ2 |ηvζk(ε)|2

2Es

)
exp

{
−Γ2 |ηvζk(ε)|2

2Es

}]
. (5.1.12)

Note that in the limit case of zero DC offset, the BER expression reduces to Pk = 1
2
(1 − Γ)

given in [6, Eq. 13.3-7]. From expression (5.1.12), considering a first order Taylor approxi-

mation, the irreducible BER floor due to CFO and residual DC offset in the k-th subcarrier

can be easily calculated, i.e. considering γ̄ → ∞ and |ηvζk(ε)|2 << Es

Pk ≈ |ηvζk(ε)|2
4Es

. (5.1.13)

Hence, in this scenario the BER floor is approximately one quarter of the DC offset to signal

ratio. Combining (5.1.13) and the BER expression in the absence of DC offset Pk = 1
2
(1 − Γ),

we can derive a rule of thumb for the maximum allowable residual DC offset in a receiver

for a particular γ̄th value,

|ηv(max)|2 =
2Es

β2|ζk(ε)|2
(

1 −
√

γ̄th

1 + γ̄th

)
, (5.1.14)

where β is a constant value designed for a particular SNR degradation. If we consider a

maximum degradation due to DC offset of 0.5dB, we obtain β ≈ 4.
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5.1.4 Numerical Results

We use the expressions calculated in Section 5.1.3 to evaluate the BER in different particular

scenarios. As in [66], we consider an OFDM system with N=64 subcarriers with BPSK

modulation, and the same parameters for multipath Rayleigh fading. We assume that the

channel does not vary within one OFDM symbol, and k = 0 subcarrier is not used for data

transmission. For convenience of discussion, we assume equal DC offset in all the reception

branches (i.e. ηv = η). In the following, we denote the signal-to-channel estimation error

ratio (SCER) as γCE = ES/σ2
ψ.

Figure 5.1 illustrates the effect of DC offset in the BER for all subcarriers which compose

the OFDM symbol, for different values of γCE and ηv. Two reception branches (i.e. NR=2)

are considered. As expected, the BER in the subcarriers near DC is worse than in higher

frequencies (|k| → N/2), since the DC offset leakage decays with |k| index. When channel

estimation error grows (i.e. lower γCE values), the BER in low and high frequencies tends

to behave similarly, and the BER floor is increased.

Figure 5.1: BER vs subcarrier index k, with NR=2 receive antennas, BPSK modulation,
ε = 0.4, and γ̄ = 30dB for different values of γCE and ηv.
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Figure 5.2 shows the average BER for the OFDM symbol defined as

BER = 1
N−1

k=N/2−1∑
k=−N/2,k 	=0

Pk, (5.1.15)

as a function of the SNR, for different scenarios in the case of a single reception branch. In the

case of dominant channel estimation error, similar BER values are obtained independently

of the DC offset ηv. When the SCER grows, a BER floor due to DC offset interference is

appreciated. When PCSI is assumed, the BER floor due to DC offset is accurately calculated

by (5.1.13).

Figure 5.2: Average BER vs SNR, with NR=1 receive antenna and BPSK modulation, for
different values of ηv and γCE.

5.1.5 Discussion

We performed an exact closed-form BER analysis of an OFDM system with BPSK modula-

tion, in the presence of CFO, DC offset and non-ideal channel estimation, for an arbitrary

number of receive antennas, when multipath Rayleigh fading is considered. Results show
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that channel estimation error in combination with DC offset and CFO provokes the ap-

pearance of an irreducible BER floor. Additionally, we provided a simple rule of thumb to

determine the maximum allowable residual DC offset in a receiver for a target SNR.

The main contributions of this section have been published in [20]

5.2 OFDM systems affected by IQ-imbalance

5.2.1 Related Work

In section 5.1, it was stated that DCRs are a feasible alternative for the implementation of

low-cost wireless radio RF front-ends. Despite its appealing characteristics, these structures

are more sensitive to different impairments associated with a non ideal behaviour of analog

components. One of the major impairments in DCRs is the enhancement of amplitude and

phase mismatch between the in-phase (I) and quadrature (Q) carriers, usually referred to

as IQ imbalance. The effect of these mismatches results on a performance degradation due

to the appearance of an interference term due to the loss of orthogonality between I and Q

components.

In the case of orthogonal frequency division multiplexing (OFDM) systems, the effect of

IQ imbalance is the appearance of a mirror carrier interference (MCI), since the received

signal at the frequency index k is both affected by the transmitted symbol z−k and the

channel frequency response H−k at the mirror index. In the literature, the effects of IQ

imbalance have been mostly addressed from the perspective of compensation schemes [70–

77] or pilot design [78–80]. On the contrary, analytical results covering the impact of IQ

imbalance in the system performance are much scarcer [81–83].

Particularly, the bit error rate of an OFDM system affected by IQ imbalance at the re-

ceiver side was treated in [81], assuming that the channel frequency responses Hk and H−k

were independent, as well as perfect channel state information (PCSI) at the receiver side.

These results were further extended in [82] introducing some other receiver impairments in

the analysis such as imperfect channel estimation, but the BER expression required a two-

fold numerical integration. The effects of transmit (TX) and receive (RX) IQ imbalances
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were tackled in [83], considering a multiple-input multiple-output (MIMO) OFDM system.

However, the same assumptions that in [81] were taken, the closed-form results were approx-

imate, and an expression accounting for the joint effect of TX and RX IQ imbalances was

not provided.

A realistic system model of an OFDM system impaired by TX and RX IQ imbalances

must consider that the equivalent channel gain is a complex random variable (RV) that lacks

from circular symmetry, i.e., the real and imaginary parts of the equivalent channel gain are

not independent and have different variances [12, 13]. Hence, the non-circular symmetry of

the RVs involved in the process must be taken into account for an exact analysis.

In this section, we calculate an exact closed-form expression for the bit error rate (BER)

of an OFDM system impaired by TX and RX IQ imbalances, when imperfect channel state

information (ICSI) is considered, in Rayleigh fading channels. The probability calculation is

accomplished by means of the general analysis of quadratic forms introduced in section 3.3,

which considers complex-valued non-circularly symmetric zero-mean Gaussian RVs.

We demonstrate that the BER in this scenario can be expressed in terms of the Lauricella

function FD(·), which has recently been used in a great number of publications in the area

of performance analysis of wireless communication systems [84–88]. Additionally, we derive

two approximate yet accurate expressions for the BER: the first one is given in terms of the

Appell hypergeometric function F1(·), which is included in many mathematical packages such

as Mathematica, and the second one does not require for the evaluation of special functions.

The former approximation provides an excellent match with the exact BER values for a wide

range of IQ imbalances, whereas the latter expression is very accurate for practical values of

IQ imbalances.

Hence, the contribution of this work is twofold: First, an exact closed-form expression for

the BER in the investigated scenario is obtained; and secondly, two approximate yet highly

accurate expressions for the BER are provided.

5.2.2 Preliminaries

Proposition 1. Let x and y be two correlated circularly-symmetric complex RVs with zero
mean, σ2 variance and ρ � E{xy∗}. The RV z � ax + by∗ is in general a non circularly
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symmetric RV, where a, b ∈ C are arbitrary constants values.

Proof. Using the definitions in (3.3.1) and (3.3.2), the terms in the real covariance matrix of
z̆ can be calculated as

σ2
zr

=
σ2

2

(|a|2 + |b|2 + 2�{ρab}) , (5.2.1)

σ2
zi

=
σ2

2

(|a|2 + |b|2 − 2�{ρab}) , (5.2.2)

σzrzi
= σ2�{ρab}. (5.2.3)

Clearly, according to the circular symmetry condition given in section 3.3.1, z is a non
circularly symmetric RV when a, b and ρ are different to zero.

5.2.3 System Model

In the following, we consider an OFDM system where the cyclic prefix size is larger than

the maximum delay spread. It is also assumed that time and frequency synchronization is

perfectly accomplished at the receiver side. Hence, an equivalent frequency-domain system

model as in [77, 83] can be used, where the received signal in the kth subcarrier rk can be

expressed as

rk = gkzk + h−kz−k + wk, (5.2.4)

where k ∈ {−N/2, . . . , N/2− 1}, N is the number of subcarriers of the OFDM symbol, and

zk and z−k represent the transmitted symbols in the kth and −kth subcarriers respectively

(namely desired signal and MCI), belonging to an M -ary quadrature amplitude modula-

tion (M -QAM) constellation. The set of M complex symbols is denoted as SM � {su,v ∈
C /�{su,v} = (2u −√

M − 1)d; �{su,v} = (2v −√
M − 1)d; {u, v} ∈ 1, . . . ,

√
M}, where 2d

is the minimum distance between symbols, and independent bit mapping is assumed for I

and Q components.

The remainder terms in (5.2.4) gk and h−k represent the equivalent channel gains for

the desired signal and the MCI respectively, whereas wk is an equivalent noise term. These

latter terms can be expressed as

gk = K1G1Hk + K2G2H
∗
−k, (5.2.5)

h−k = K2G
∗
1H

∗
−k + K1G

∗
2Hk, (5.2.6)

wk = K1nk + K2n
∗
−k, (5.2.7)
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where Hk and H−k are correlated complex Gaussian RVs with zero-mean and σ2
g variance

which denote the channel frequency response in the kth and −kth subcarriers respectively, nk

and n−k represent the additive white Gaussian noise with zero-mean and σ2
n variance, and

the Gi and Ki terms (i = 1, 2) are used to model the TX and RX IQ imbalances respectively,

through the following expressions

G1 =
1 + αte

jϕt

2
, G2 =

1 − αte
−jϕt

2
, (5.2.8)

K1 =
1 + αre

−jϕr

2
, K2 =

1 − αre
jϕr

2
. (5.2.9)

Hence, the amplitude and phase imbalances are given by αt and ϕt at the transmitter side,

and by αr and ϕr at the receiver side, respectively.

According to proposition (1), the equivalent gain gk in this system model is a non-

circularly symmetric complex Gaussian RV with zero-mean, which can be characterized by

a 2 × 2 covariance matrix [13] as

Σğk

Δ
= E

{[
� (gk)

� (gk)

] [
� (gk) � (gk)

]}
=

[
σ2

(gk) σ2


(gk)�(gk)

σ2

(gk)�(gk) σ2

�(gk)

]
. (5.2.10)

Note that in the absence of IQ imbalances (i.e., αt = αr = 1 and ϕt = ϕr = 0), we have

G1 = K1 = 1 and G2 = K2 = 0, and the equivalent gain terms are expressed as gk = Hk

and h−k = 0. Therefore, this leads to circular symmetry in gk RV, and Σğk
= I2×2

σ2
g

2
., where

I2×2 is the identity matrix.

We also denote the channel estimate at the receiver side as ĝk = gk + Ψk, where Ψk

is in general a non-circularly symmetric complex Gaussian RV that represents the channel

estimation error, with zero-mean and covariance matrix ΣΨ̆k
. Finally, the decision metric

after channel compensation is expressed as

yk =
rkĝ

∗
k

|ĝk|2
. (5.2.11)

5.2.4 BER analysis

The probability calculation in this scenario is accomplished as follows: First, the BER is

expressed as the average, over all the transmitted zk and z−k symbols, of a weighted sum of
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components of error probability. These weights only depend on the constellation mapping,

and their calculation is tackled in section 2.3. Then, the probability calculation for the

investigated scenario is carried out by making use of a general analysis of non circularly-

symmetric Gaussian quadratic forms in complex RVs.

According to these premises, the BER expression is hence given by

BER =
1

M2log2M

∑
∀su,v ,su′,v′∈SM

⎡
⎣u−1∑

n=1

α−
u (n)I−

u,v(n) +

√
M−1∑
n=u

α+
u (n)I+

u,v(n) +
v−1∑
n=1

β−
v (n)Q−

u,v(n) +

√
M−1∑
n=v

β+
v (n)Q+

u,v(n)

⎤
⎦ ,

(5.2.12)

where the α±
u (n) and β±

v (n) coefficients are defined in (2.3.2), and I±
u,v(n) and Q±

u,v(n) are

the components of error probability (CEPs) conditioned on a particular value of zk and z−k,

i.e.,

I∓
u,v(n) = Pr {±�{yk − BI(n)} < 0| zk = su,v; z−k = su′,v′} , (5.2.13)

Q∓
u,v(n) = Pr {±�{yk − BQ(n)} < 0| zk = su,v; z−k = su′,v′} . (5.2.14)

where BI(n) = (2n−√
M)d and BQ(n) = j(2n−√

M)d are the decision boundaries for the

I and Q components in the M -QAM constellation, respectively.

With these definitions, we proceed to calculate I−
u,v(n) probability. The remainder CEPs

can be calculated using the same procedure. Combining (5.2.11) and (5.2.13), we have

I−
u,v(n) = Pr

{
1

2
rkĝ

∗
k +

1

2
r∗kĝk − |ĝk|2 BI(n) < 0

}
= Pr {D < 0} . (5.2.15)

In expression (5.2.15), D can be seen as a particular case of a general quadratic form denoted

as D = A |X|2 + B |Y |2 + CXY ∗ + C∗X∗Y , where A = 0, B = −BI(n), C = Cr+jCi = 1/2,

X = rk and Y = ĝk. The values of A, B and C parameters for the remainder CEPs are given

in Table 5.2.

Using the matrix expression of a quadratic form introduced in (3.2.1), and adopting the

notation presented in (3.3.1), we can express

D = x̆T
k Q̆x̆k (5.2.16)
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CEP A B C

I−(n) 0 −BI(n) 1/2
I+(n) 0 BI(n) −1/2
Q−(n) 0 −BQ(n) j/2
Q+(n) 0 BQ(n) −j/2

Table 5.2: Quadratic form matrices for the different CEPs

where

x̆k =

[
r̆k

˘̂gk

]
; Q̆ =

[
Ă C̆

C̆T B̆

]
. (5.2.17)

Note that a simple rearrangement of rows and columns has been performed in x̆k and Q̆,

in order to allow the covariance matrix of x̆k to be expressed in terms of the individual

covariance matrices of r̆k, ˘̂gk, and its cross correlation matrix in Appendix 5.2.7.

For convenience of notation, we introduce a superindex where necessary to denote the

corresponding CEP. The x̆k vector is a real Gaussian RV, with zero mean and covariance

matrix R � E
{
x̆kx̆

T
k

}
. The covariance matrix R for this scenario is derived in Appendix

5.2.7. Finally, with R and Q̆ matrices, the probability (5.2.15) is calculated using (3.3.19)

as

I−
u,v(n) =

√
ωI−

1 ωI−
2 ωI−

4

dI−
1,3d

I−
2,3ω

I−
3

F

(
dI−

3,4

ωI−
3

,−dI−
3,4

dI−
1,3

,−dI−
3,4

dI−
2,3

)
, (5.2.18)

where ωI−
i=1...4 = −1

2λi
are the poles of the characteristic function of D, λi are the eigenvalues

of RQ̆I−
matrix, di,j = ωi − ωj, F (·, ·, ·) Δ

= FD(1
2
, 1, 1

2
, 1

2
; 1; ·, ·, ·) and FD is the Lauricella

function.

The calculation of I+
u,v(n) and Q±

u,v(n) can be performed following the same procedure,

since it is only necessary to modify Q̆ matrix according Table 5.2. Therefore, the exact
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closed-form expression for the BER is given by

BER = 1
M2log2M

∑
∀su,v ,su′,v′∈SM

[
u−1∑
n=1

α−
u (n)

√
ωI−

1 ωI−
2 ωI−

4

dI−
1,3 dI−

2,3 ωI−
3

F

(
dI

−
3,4

ωI−
3

,−dI
−

3,4

dI−
1,3

,−dI
−

3,4

dI−
2,3

)
+

√
M−1∑
n=u

α+
u (n)

√
ωI+

1 ωI+
2 ωI+

4

dI+
1,3 dI+

2,3 ωI+
3

F

(
dI

+

3,4

ωI+
3

,−dI
+

3,4

dI+
1,3

,−dI
+

3,4

dI+
2,3

)
+

v−1∑
n=1

β−
v (n)

√
ωQ−

1 ωQ−
2 ωQ−

4

dQ−
1,3 dQ−

2,3 ωQ−
3

F

(
dQ

−
3,4

ωQ−
3

,−dQ
−

3,4

dQ−
1,3

,−dQ
−

3,4

dQ−
2,3

)
+

√
M−1∑
n=v

β+
v (n)

√
ωQ+

1 ωQ+

2 ωQ+

4

dQ+

1,3 dQ+

2,3 ωQ+

3

F

(
dQ

+

3,4

ωQ+

3

,−dQ
+

3,4

dQ+

1,3

,−dQ
+

3,4

dQ+

2,3

)]
,

(5.2.19)

where α±
u (n) and β±

v (n) coefficients are calculated in (2.3.2) for an arbitrary bit-mapping,

and in (2.3.7) for the particular case of Gray mapping.

The calculated expression (5.2.19) is exact, and consists of a finite sum of Lauricella

functions. However, it is possible to simplify this expression by means of some considerations

in (5.2.19).

Using the results of expression (3.3.24), the BER can be approximated by the following

expression

BER = 1
M2log2M

∑
∀su,v ,su′,v′∈SM

[
u−1∑
n=1

α−
u (n)

√
ωI−

1 ωI−
2 ωI−

4

dI−
1,3 dI−

2,3 ωI−
3

G

(
dI

−
3,4

ωI−
3

,−dI
−

3,4

d̄I−

)
+

√
M−1∑
n=u

α+
u (n)

√
ωI+

1 ωI+
2 ωI+

4

dI+
1,3 dI+

2,3 ωI+
3

G

(
dI

+

3,4

ωI+
3

,−dI
+

3,4

d̄I+

)
+

v−1∑
n=1

β−
v (n)

√
ωQ−

1 ωQ−
2 ωQ−

4

dQ−
1,3 dQ−

2,3 ωQ−
3

G

(
dQ

−
3,4

ωQ−
3

,−dQ
−

3,4

d̄Q−

)
+

√
M−1∑
n=v

β+
v (n)

√
ωQ+

1 ωQ+

2 ωQ+

4

dQ+

1,3 dQ+

2,3 ωQ+

3

G

(
dQ

+

3,4

ωQ+

3

,−dQ
+

3,4

d̄Q+

)]
,

(5.2.20)

where G(·, ·) � F1(
1
2
, 1, 1; 1; ·, ·), and d̄ � d1,3+d2,3

2
. The only assumptions in (3.3.24) can be

summarized as

• The magnitudes of the distances between ωi, ωj with equal sign are much lower than

the magnitudes of the distances between ωi, ωj with different sign 3.3.21.

• The magnitudes of the distances between ωi, ωj with equal sign are much lower than

the magnitudes of the ωi 3.3.22.
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Another approximate expression can be obtained according (3.3.26), as follows

BER = 1
M2log2M

∑
∀su,v ,su′,v′∈SM

[
u−1∑
n=1

α−
u (n)

√
ωI−

1 ωI−
2

ωI−
3 −ωI−

1 +ωI−
2

2

+

√
M−1∑
n=u

α+
u (n)

√
ωI+

1 ωI+
2

ωI+
3 −ωI+

1 +ωI+
2

2

+

v−1∑
n=1

β−
v (n)

√
ωQ−

1 ωQ−
2

ωQ−
3 −ωQ−

1 +ωQ−
2

2

+

√
M−1∑
n=v

β+
v (n)

√
ωQ+

1 ωQ+

2

ωQ+

3 −ωQ+
1 +ωQ+

2
2

]
.

(5.2.21)

In this case, we assumed that the values of IQ imbalances are moderate, which means

that the non-circular symmetry in gk is reduced. Since the ωi are double in the case of

circularly symmetric RVs (see section 3.3.2), ω3 and ω4 are close to each other as the non-

circular symmetry is reduced. This implies, in conjunction with (3.3.21) and (3.3.22), that

d3,4

d̄
tends to zero more rapidly than d3,4

ω3
when moderate IQ imbalances are considered.

5.2.5 Numerical Results

In this section, we use the closed-form expressions obtained in section 5.2.4 to evaluate the

BER performance in different scenarios. Gray mapping is considered for the M -QAM con-

stellations. We define the signal-to-noise ratio (SNR) as γ = Es/σ
2
n, where Es is the average

transmitted constellation energy. Similarly, we denote the signal-to-channel estimation error

ratio as γψ = Es/σ
2
ψ, where σ2

ψk
= tr(ΣΨ̆k

) and ΣΨ̆k
� E{Ψ̆kΨ̆

T
−k} = 0.5σ2

ψk
I2×2, according

to the channel estimation model given in [38]. We also define the correlation between the

channel frequency response Hk and the mirror index H−k as ρ = E{H̆kH̆
T
−k}/σ2

g .

Fig. 5.3 illustrates the BER as a function of γ, for a general scenario including TX

and RX IQ imbalances, imperfect channel estimation, non-independent channel frequency

responses at k and −k indices, as well as different modulation schemes. Monte Carlo simula-

tions have been included in order to show the validity of the calculated expression (5.2.19).

It is appreciated the appearance of a irreducible error floor due to ICSI, for the different con-

stellations. When perfect channel estimation is considered, an error floor is still appreciated

due to the effect of IQ imbalances.

For convenience of discussion, in order to separate the effects of ICSI and IQ imbalances

we will assume PCSI in the forthcoming figures. In Fig. 5.4 and 5.5, it is investigated the

effect of transmit and receive IQ imbalances, respectively.
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Figure 5.3: BER vs SNR for different values of channel estimation error and constellation
sizes, αt = 0.9,φt = 4, αr = 0.95,φr = 2, ρ = 0.5.

Figure 5.4: BER vs SNR for different values of TX IQ imbalance and constellation sizes,
αr = 1,φr = 0, ρ = 0.5, PCSI.
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It is observed in Fig. 5.4 that the effect of TX IQ imbalance, either in amplitude or

phase, does not severely degrade the BER performance. In fact, an irreducible BER floor is

not appreciated for the considered SNR values, even for large values of phase IQ imbalances.

It can also be stated how denser constellations (i.e., 64-QAM) suffer from a more important

performance degradation in the presence of TX IQ imbalance.

On the contrary, the effect of RX IQ imbalance results in the appearance of an irreducible

floor in the BER, as observed in Fig. 5.5. For the particular case of amplitude RX IQ

imbalance (e.g., αr = 0.9), it is appreciated how the performance is dramatically reduced,

leading to BER floors above 10−3 and 10−2 when 16-QAM and 64-QAM are considered,

respectively. Similarly, the phase RX IQ imbalance also leads to an irreducible BER, even

when low imbalances are considered.

Figure 5.5: BER vs SNR for different values of RX IQ imbalance and constellation sizes,
αt = 0.9,φt = 4, ρ = 0.5, PCSI.

The effect of the correlation between the channel frequency response at the desired fre-

quency index Hk and the mirror index H−k is studied in Fig. 5.6. It is observed that the

effect of IQ imbalance varies depending on the magnitude of the correlation ρ, resulting in

a better performance when the correlation between the desired and mirror carrier frequency
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responses grows. Hence, the assumption of statistical independence between Hk and H−k

[81, 83] leads to a considerable underestimation in the achievable BER. In the limit case of

ρ = 1, it is interesting to remark that TX and RX IQ imbalances become mathematically

equivalent, which can be extracted from (5.2.5) and (5.2.6) by considering Hk = H−k.

Figure 5.6: BER vs SNR, for different values of correlation and constellation sizes,
αt = 0.9,φt = 4, αr = 0.95,φr = 2, PCSI.

In Fig. 5.7, we compare the accuracy of the approximated BER expressions (5.2.20)

and (5.2.21) with the exact BER expression given by (5.2.19). It is observed that when

the IQ imbalance is moderate, both approximations provide an excellent match with the

exact expressions. As the IQ imbalance is increased, the accuracy of approximation (5.2.20)

is still excellent, whereas the differences between the approximation (5.2.21) and the exact

expression become more appreciable. For 64-QAM it is observed that the differences between

the exact and approximate expression (5.2.21) grow. In this case, the decision regions are

smaller and therefore the different contributions in the BER of the real and imaginary parts

of the decision statistic (due to non-circular symmetry) are more evident.

75



5.2. OFDM SYSTEMS AFFECTED BY IQ-IMBALANCE

Figure 5.7: BER vs SNR (exact and approximate) for different values of TX-RX IQ imbal-
ances and constellation sizes, ρ = 0.5, PCSI.

5.2.6 Discussion

An exact BER analysis of OFDM systems impaired by transmit and receive IQ imbalances

has been presented, when ICSI is considered under Rayleigh fading. The calculated ex-

pression is obtained using a novel general analysis of quadratic forms in complex-valued

non-circularly symmetric Gaussian RVs with zero mean, and is given in terms of a weighted

sum of Lauricella FD functions. Two additional BER expressions are provided, which allow

for accurately calculating the BER for a wide range of IQ imbalances, even preventing the

need of evaluating special functions when moderate IQ imbalances are considered. Results

show that performance loss due to RX IQ imbalance is in general more severe, compared to

TX IQ imbalance. This degradation becomes more important when denser constellations are

considered, and when the correlation between the desired and the mirror channel frequency

responses is decreased.

The main contributions of this section have been published in [22].
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5.2.7 Appendix: Calculation of the covariance matrix R

Let R be the covariance matrix defined as E
{
x̆x̆T
}
, where x̆ vector is

x̆T =
[
�{y1} � {y1} � {y2} � {y2}

]
, (5.2.22)

and y1, y2 are complex-valued non-circularly symmetric Gaussian RVs, with zero-mean, co-

variance matrices Σy̆1 and Σy̆2 , and cross covariance matrix Σy̆1y̆2 . Hence, R can be ex-

pressed as

R =

[
Σy̆1 Σy̆1y̆2

ΣT
y̆1y̆2

Σy̆2

]
. (5.2.23)

The complex-valued RVs y1 and y2 are identified with rk and ĝk in our system model,

respectively. If we re-elaborate the expressions for rk and ĝk from Section 5.2.3, we have

rk = Δ1Hk + Δ2H
∗
−k + wk; (5.2.24)

ĝk = Δ3Hk + Δ4H
∗
−k + ψk, (5.2.25)

where Δi parameters are defined as

Δ1 = K1G1zk + K1G
∗
2z−k; Δ3 = K1G1; (5.2.26)

Δ2 = K2G2zk + K2G
∗
1z−k; Δ4 = K2G2. (5.2.27)

After some algebra, the following expressions for the correlation matrices are obtained

Σy̆1 = [ Δ̆1 Δ̆2Φ ]

[
ΣH̆ Σρ

ΣT
ρ ΣH̆

][
Δ̆T

1

ΦΔ̆T
2

]
+ Σw̆, (5.2.28)

Σy̆1y̆2 = [ Δ̆1 Δ̆2Φ ]

[
ΣH̆ Σρ

ΣT
ρ ΣH̆

][
Δ̆T

3

ΦΔ̆T
4

]
+ Δ̆1ΣHΨ + Δ̆2ΦΣM , (5.2.29)

Σy̆2 = [ Δ̆3 Δ̆4Φ ]

[
ΣH̆ Σρ

ΣT
ρ ΣH̆

][
Δ̆T

3

ΦΔ̆T
4

]
+ Θ + ΘT + ΣΨ̆, (5.2.30)

where Δ̆i matrices are defined from Δi according to the mapping defined in section 3.3.1,

and some auxiliary matrices have been used

Φ =

[
1 0

0 −1

]
;Θ =

[
Δ̆3, Δ̆4Φ

] [ ΣHΨ

ΣM

]
(5.2.31)
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and

ΣH̆ = E
{
H̆kH̆

T
k

}
;Σρ = E

{
H̆kH̆

T
−k

}
;Σw̆ = E

{
w̆kw̆

T
k

}
;

ΣΨ̆ = E
{
Ψ̆kΨ̆

T
k

}
;ΣHΨ = E

{
H̆kΨ̆

T
k

}
;ΣM = E

{
H̆−kΨ̆

T
k

} (5.2.32)

In the particular case of PCSI, the expressions for the correlation matrices are simplified,

Σy̆1 = [ Δ̆1 Δ̆2Φ ]

[
ΣH̆ Σρ

ΣT
ρ ΣH̆

][
Δ̆T

1

ΦΔ̆T
2

]
+ Σw̆, (5.2.33)

Σy̆1y̆2 = [ Δ̆1 Δ̆2Φ ]

[
ΣH̆ Σρ

ΣT
ρ ΣH̆

][
Δ̆T

3

ΦΔ̆T
4

]
, (5.2.34)

Σy̆2 = [ Δ̆3 Δ̆4Φ ]

[
ΣH̆ Σρ

ΣT
ρ ΣH̆

][
Δ̆T

3

ΦΔ̆T
4

]
. (5.2.35)
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Chapter 6

Analysis of MIMO-OFDM systems
with transmit beamforming

I
N this chapter, it is analyzed the effect of ICSI in a MIMO-OFDM system that employs

transmit beamforming and MRC reception. Since in this scheme it is required the

knowledge of the CSI at both the transmitter and receiver sides, the objective of this analysis

is to determine the degradation in the system performance due to ICSI.

6.1 Related Work

In the previous chapters, the performance analysis of MIMO (chapter 3) and OFDM (chapter

4) systems using quadratic forms was accomplished. Finally, in this chapter we proceed to

apply the mathematical tools derived in this thesis to the analysis of a MIMO-OFDM system.

It is known that when MIMO techniques are used in conjunction with orthogonal frequency

division multiplexing (OFDM), the benefits of employing multiple antennas are extended to

multipath environments. Clearly, the performance of a MIMO-OFDM system depends on

the accuracy in the estimation of the channel response, in order to compensate the effects of

the frequency-selective time-varying channel for every frequency subcarrier at every symbol

time.

The effect of channel estimation errors on the bit error rate (BER) performance in fading

channels has been widely studied by many authors. Since the analysis of pilot symbol assisted

modulation (PSAM) was introduced in [89], different analyses have been done: approximate

79



6.1. RELATED WORK

BER expressions in Rayleigh fading channels with imperfect channel estimation for quadra-

ture amplitude modulation (QAM) were given in [14], and exact closed-form expressions

for QAM systems with antenna diversity in Rayleigh [90] and Ricean fading channels were

obtained in [9, 17].

When OFDM is used, several strategies can be used for channel estimation [91], but

the most extended mechanisms are based on pilot arrangement [92]. In [15], an exact BER

analysis for OFDM systems under imperfect channel state information (CSI) in Ricean fading

channels is performed, considering different reception branches for maximal ratio combining

(MRC).

For the general case of precoded multiple antenna systems, exact closed-form BER expres-

sions which account for the effect of channel estimation errors have recently been obtained

in different scenarios: transmit beamforming and MRC with channel prediction errors with

fixed [10] and adaptive modulation [93] in Rayleigh fading, and singular value decomposi-

tion (SVD) MIMO systems [27] with channel estimation error and feedback delay in Ricean

fading channels.

In the case of precoded MIMO-OFDM systems, less analyses are available in the lit-

erature. Recently, a lower bound for channel prediction and interpolation errors has been

proposed in [94]. Under the assumption of perfect CSI knowledge in both the transmitter and

receiver sides, a performance analysis of coded MIMO-OFDM systems over Ricean fading

channels was tackled in [95]. In [96], space-frequency block coded OFDM (SFBC-OFDM)

systems are analyzed, considering the effects of channel estimation errors only in the re-

ceiver side. A closed form analysis covering the effect of channel estimation errors in both

transmitter and receiver sides has not been accomplished yet, to the author’s knowledge. In

this chapter, exact closed-form BER expressions for MIMO-OFDM beamforming with MRC

under imperfect CSI due to prediction and interpolation errors are derived. Particularly, our

analysis is valid for any square M -ary QAM constellation to be mapped onto the OFDM

subcarriers.

The remainder of this section is organized as follows. Section 6.2 describes the system

model considered in our analysis. In Section 6.3 exact closed-form BER expressions are
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Figure 6.1: System model for MIMO-OFDM Beamforming with MRC and imperfect CSI

derived. Section 6.4 presents some numerical results which exploit the analytical expressions

derived in previous section. Finally, main conclusions are exposed in Section 6.5.

6.2 System Model

Figure 6.1 shows the system model for MIMO-OFDM beamforming with MRC assumed

in this work. We consider NT transmit antennas and NR receive antennas. In this system

model, the symbol z is spread among the set of transmit antennas by means of a beamforming

vector v̂, which is retrieved from the receiver using a feedback channel with τP delay.

For every signal path between transmitter and receiver, we assume a channel impulse

response (CIR) with exponential multipath profile, mean delay spread denoted as τ , nor-

malized gain, and time variation according to Jakes’ correlation model [97], with maximum

Doppler shift fD.

For this analysis, we consider the following usual assumptions [15, 98] with respect to

the OFDM transmission:

1. Channel state changes from symbol to symbol, but it does not significantly change

within one OFDM symbol period T .

2. CIR length L is shorter than cyclic prefix (CP) size

3. Time and frequency synchronization is perfectly accomplished in the receiver side.
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Therefore, the effect of intersymbolic interference (ISI) and intercarrier interference (ICI)

are neglected. Under these assumptions, we can consider an equivalent channel model in

the frequency domain so that the received signal, for the kth subcarrier of the nth OFDM

symbol, can be expressed as

y(n, k) = H(n, k)x(n, k) + w(n, k), (6.2.1)

where the transmitted signal after beamforming x(n, k) is an NT × 1 vector, the received

signal before MRC y(n, k) is an NR × 1 vector, w(n, k) is an NR × 1 vector representing

noise, and the channel gain is modelled by an NR×NT complex matrix H(n, k), so that each

entry Hi,j(n, k) is the channel gain between the j th transmit and the ith receive antennas.

For simplicity, in the following analysis we omit indices n, k unless they are necessary.

The entries Hi,j are assumed independent identically distributed (i.i.d) complex circularly

symmetric normal RVs, with zero-mean and unity-variance, i.e. Hi,j ∼ CN(0, 1), where the

symbol ∼ means statistically distributed as. The entries of noise vector, namely wm, are i.i.d.

complex circularly symmetric normal RVs ∼ CN(0, N0).

Since we assume an exponential distribution of the multipath time delay, the two-

dimensional correlation function of Hi,j entries is given in [15, 98] as

ρH(Δn, Δk) � E[Hi,j(n, k)H∗
i,j(n + Δn, k + Δk)] =

J0[2πεF (Δn)]

1 − j2πεT (Δk)
, (6.2.2)

where ∗ denotes complex conjugation, J0 is the zeroth order Bessel function of the first kind,

εF = fDT represents the maximum Doppler shift fD normalized to the OFDM symbol period

T , and εT = τ/T represents the normalized mean delay spread.

In the transmitter side, pilot subcarriers with energy Ep are transmitted on certain posi-

tions within the OFDM discrete time-frequency grid [92], in order to facilitate the estimation

of the channel frequency response. These pilot subcarriers are uniformly distributed along

this grid, with spacing ΔN in the discrete time-domain and spacing ΔK in the discrete

frequency-domain. Hence, an initial channel estimate Ḣ at pilot positions is obtained, since

both the value and position of pilot subcarriers is known in the receiver side.
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The predicted channel Ĥ is employed to obtain the beam-steering vector v̂ which must

be fed back to the transmitter, and can be expressed as

Ĥ(n + n0, k + k0)
Δ
=

NP−1∑
i=0

cPi
Ḣ(n − ΔN(i + τP ), k), (6.2.3)

where NP is the number of taps of the prediction filter, cPi
are the coefficients of the prediction

filter, n0 = 0 . . . ΔN − 1 indicates a shift from the position where the pilot is allocated in the

symbol index, k0 = 0 . . . ΔK − 1 denotes a shift in the discrete frequency grid, relative to

the position of pilot subcarriers, and τP is the feedback delay expressed in units of discrete

time intervals between pilots. Note that, in order to reduce feedback information, cPi
are

considered independent of n0 and k0.

The interpolated channel H̃ is needed to carry out the MRC at the receiver, and is given

by

H̃(n + n0, k + k0)
Δ
=

(NI−1)/2∑
i=−(NI−1)/2

cIi
Ḣ(n, k − iΔK), (6.2.4)

where NI is the number of taps of the interpolation filter, cIi
are the coefficients of the

interpolation filter. Note that in this case, since channel interpolation is needed to be

accurately calculated for every frequency subcarrier, the value of cIi
varies for every k0

although for notational simplicity this dependence has not been stated.

Both channel estimates are obtained by filtering the previous channel estimate Ḣ. In

our receiver model, we define the estimation Ξ̇, prediction Ξ̂ and the interpolation Ξ̃ error

matrices as

Ξ̇
Δ
= H − Ḣ; Ξ̂

Δ
= H − Ĥ; Ξ̃

Δ
= H − H̃, (6.2.5)

where the prediction and interpolation errors depend on the magnitude of the estimation

error Ξ̇, and the coefficients of the prediction and interpolation filters, respectively.

Using the predicted channel Ĥ, the optimal beam-steering vector v̂ is the NT -dimensional

unitary eigenvector corresponding to the largest eigenvalue λ̂ of matrix ĤHĤ [99], which is

given by λ̂ = v̂HĤHĤv̂. The receiver feeds vector v̂ back to the transmitter to perform

beamforming, so that the transmitted vector becomes x = v̂z. The effective channel gain is

an NR-dimensional vector defined as h
Δ
= Hv̂ and the predicted effective channel gain is the
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vector ĥ
Δ
= Ĥv̂, whose square Euclidean norm is ||ĥ||2 = λ̂. The effective channel gain can

also be expressed as h
Δ
= Hv̂ = (Ĥ + Ξ̂)v̂ = ĥ + ψ̂, where ψ̂ is the channel gain prediction

error.

At the receiver, the effective channel gain vector h is estimated to perform MRC. Using

the interpolated channel H̃ and the beam-steering vector v̂ sent to the transmitter, according

to our system model, the estimation of h is

h̃
Δ
= H̃v̂ = (H − Ξ̃)v̂ = (Ĥ + Ξ̂ − Ξ̃)v̂ = ĥ + ψ̂ − ψ̃, (6.2.6)

where ψ̃ is the channel gain interpolation error.

The symbol r which results from applying MRC to received vector y is given by

r
Δ
=

h̃Hy

||h̃||2 =
h̃Hh

||h̃||2 z +
h̃Hw

||h̃||2 = gz + w′, (6.2.7)

where z is the transmitted symbol with average energy ES, g is the gain mismatch and w′ is

the resultant noise after MRC, whose pdf is circularly symmetric since w is a vector whose

entries are circularly symmetric and independent of h̃.

6.3 BER analysis

We consider square M -QAM modulation with independent bit mapping for the in-phase (I)

and quadrature (Q) components for every OFDM subcarrier, so that the set of complex sym-

bols of the constellation is {su,v = (2u −√
M − 1)d + j(2v −√

M − 1)d}u,v=1,...,
√

M , where

2d is the minimum distance between symbols.

In this scenario, taking advantage of the circular symmetry in the pdf of the noise, the

BER can be expressed as

BER =

√
M∑

u=1

√
M∑

v=1

√
M−1∑

m=u

ωu(m) · Iu,v(m), (6.3.1)

where ωu(m) coefficients are constant values given in [17] for the case of Gray mapping,

and Iu,v(m) are called components of error probability (CEP), according to the notation

introduced in [10]. These CEP are defined as the probability of the received symbol to
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be above a decision boundary {B(m) = (2m − √
M)d}m=1,...,

√
M−1, when z = su,v was

transmitted, i.e.

Iu,v(m) = Pr {� {r} − B(m) > 0 | z = su,v} . (6.3.2)

In the forthcoming analysis, we calculate the CEP conditioned to a predicted channel

state Ĥ (section 6.3.1), and then we obtain both the conditional BER and the BER averaged

over all the predicted channel states (section 6.3.2).

6.3.1 Conditional CEP

In this section we derive, for our system model, the CEP of the nth symbol in the kth

subcarrier, conditioned on a predicted channel state (CCEP), i.e.

Iu,v(m; Ĥ) = Pr
{
�{r} − B(m) > 0 | Ĥ, z = su,v

}
. (6.3.3)

The calculation of CCEP is performed in two steps: firstly, we obtain the joint Gaussian

pdf of channel gain prediction and interpolation error conditioned on the predicted channel.

Then, analysis of complex Gaussian quadratic forms [6] is used for the derivation of the

CCEP; more specifically, the compact expressions presented in [10] are adopted. Let ϕ be a

random variable defined as

ϕ �
[

ϕ1 ϕ2

]t
, (6.3.4)

where

ϕ1
Δ
= Ĥi,j , ϕ2

Δ
=
[

Ξ̂i,j Ξ̃i,j

]
. (6.3.5)

Since the entries of the channel matrix H and the estimation error matrix Ξ̇ are circularly

symmetric Gaussian variables i.i.d. with zero mean, it can be shown that ϕ ∼ CN (0,Cϕ),

whose covariance matrix is

Cϕ � E
[
ϕϕH

]
=

[
C11 C12

C21 C22

]
, (6.3.6)

where the elements of the covariance matrix depend on the prediction and interpolation

filter coefficients, the correlation function of the channel ρH in (6.2.2), and the power of
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the estimation error Ξ̇. In expression (6.3.6), the matrix Cϕ is partitioned into four sub-

matrices as depicted in (6.3.7), in order to facilitate the next calculations. The prediction

and interpolation filter coefficients are expressed in vector notation, denoted as cP and cI,

respectively.

C11
Δ
= ct

PŴcP,

C12
Δ
=
[

ŵcP − ct
PŴcP ŵcP − ct

P

�

WcI

]
Δ
= CH

21,

C22
Δ
=

[
1 + ct

PŴcP − 2ŵcP 1 + ct
P

�

WcI − w̃cI − ŵcP

1 + ct
P

�

WcI − w̃cI − ŵcP 1 + ct
IW̃cI − 2w̃cI,

]
,

ŵm = ρH((m + τP )ΔN − n0, 0),

w̃m = ρH(0, (m + (NI − 1)/2)ΔK − k0),

Ŵl,m = ρH((m − l)ΔN, 0) + (N0/EP ) δ[m − l],

W̃l,m = ρH(0, (m − l)ΔK) + (N0/EP ) δ[m − l],
�

W l,m = ρH((l + τP )ΔN, (m + NI−1
2

)ΔK) + (N0/EP ) δ[l + τP ] · δ[m + NI−1
2

].

(6.3.7)

Conditioning on the predicted channel matrix Ĥ, we obtain a new circularly symmetric

Gaussian variable θi,j � ϕt
2 | ϕ1 =

[
Ξ̂i,j, Ξ̃i,j

]t
| Ĥi,j, whose mean and covariance matrix can

be calculated from Cϕ

Taking into account that ψ̂ = Ξ̂v̂, ψ̃ = Ξ̃v̂ and v̂ is a unitary vector that remains

constant conditioned on Ĥ, we can define an equivalent circularly symmetric Gaussian vari-

able defined as the vector ϑi =
[
ψ̂i, ψ̃i

] ∣∣∣ Ĥ , representing the channel gain prediction and

interpolation error, conditioned on the predicted channel. Using the analysis presented in

[100] for conditioned Gaussian random variables, the mean and covariance matrix of ϑi can

be expressed as

mϑi

Δ
= E [ϑi] = ĥiC

−1
11 C21, (6.3.8)

Cϑi

Δ
= C22 − C−1

11 C21C12 = Cϑ. (6.3.9)

Once the joint Gaussian pdf of channel gain prediction and interpolation error conditioned

on the predicted channel is obtained, the second step is the calculation of the CCEP.
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Table 6.1: Probability computation of Gaussian quadratic form.

Parameter Definition

{δi}i=1,2
1
2 tr(CxQm) ±

√(
1
2 tr(CxQm)

)2 − det(CxQm)

η

∣∣∣∣δ1

δ2

∣∣∣∣
a

√√√√2δ2

(
ΣNR

i=1m
H
xi

[
Qm − δ1Cx

−1
]
mxi

)
(δ1 − δ2)

2

b

√√√√2δ1

(
ΣNR

i=1m
H
xi

[
Qm − δ2Cx

−1
]
mxi

)
(δ1 − δ2)

2

Pr{D < 0} Q1(a, b) +
NR−1∑
p=0

Cp(a, b, η) Ip(ab) exp
{
−1

2
(a2 + b2)

}

Cp(a, b, η)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 +
1

(1 + η)2NR−1

NR−1∑
k=0

(
2NR − 1

k

)
ηk , p = 0

1

(1 + η)2NR−1

NR−1−p∑
k=0

(
2NR − 1

k

)[(
b

a

)p

ηk −
(a

b

)p
η2NR−1−k

]
, p �= 0

Let us define a random variable D as a quadratic form

D =

NR∑
i=1

xi
HQmxi, (6.3.10)

where NR is the number of diversity branches in the receiver side. The quadratic form matrix

Qm and the random variable vector xi are defined as:

xi
Δ
=

[
yi

h̃i

]
Qm

Δ
=

[
0 −1

2

−1
2

B(m)

]
, (6.3.11)

where B(m) are the decision boundaries. Thus, if we expand (6.3.10) and (6.3.11), we have

D =

NR∑
i=1

{∣∣∣h̃i

∣∣∣2 B(m) −�
(
yih̃

∗
i

)}
. (6.3.12)

Therefore, from (6.3.12) and (6.3.3) we find the equivalence between the CCEP and the
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quadratic form as

Iu,v(m; Ĥ) = Pr
{

D < 0
∣∣∣ Ĥ, z = su,v

}
, (6.3.13)

The calculation of this probability (6.3.13) can be tackled through Proakis’ analysis of

complex Gaussian quadratic forms [6, eq. B-21], or using the alternative expression used

in (3.2.7) and restated in table 6.1. According to our system model, the entries of received

vector yi and the entries of interpolated effective channel gain vector h̃i can be expressed as

yi = hiz + wi = (ĥi + ψ̂i)z + wi,

h̃i = ĥi + ψ̂i + ψ̃i,
(6.3.14)

Thus, xi conditioned on a certain transmitted symbol z = su,v and a predicted channel matrix

Ĥ , can be expressed as a linear combination of the complex and jointly normal variables

ψ̂i and ψ̃i and the independent complex normal variable wi. Hence, xi is a complex normal

vector whose mean vector and covariance matrix are

mxi

Δ
= E [xi] = ĥiμ = ĥi

(
Δ + ΘC−1

11 C21

)
, (6.3.15)

Cx
Δ
= E

[
(xi − mxi

)(xi − mxi
)H
]

= ΘCϑΘH + ΦN0, (6.3.16)

where μ = Δ + ΘC−1
11 C21 and

Δ
Δ
=

[
su,v

1

]
,Θ

Δ
=

[
su,v 0

1 −1

]
,Φ

Δ
=

[
1 0

0 0

]
. (6.3.17)

With the mean vector in (6.3.15), the covariance matrix in (6.3.16) and the quadratic

form matrix in (6.3.11), we can calculate the CCEP by using the expressions in table 6.1 as

Iu,v(m; Ĥ) = Q1(a, b)+

NR−1∑
p=0

Cp(a, b, η)Ip(ab)e−
a2+b2

2 , (6.3.18)

where Q1(·) is the Marcum Q function, Ip(·) is the modified Bessel function, and the param-

eters a, b, η and Cp are obtained using the expressions that appear in table 6.1, where δ1

and δ2 are the eigenvalues of the matrix CxQm and δ1 > δ2 by definition.

The CCEP dependence on Ĥ in expression (6.3.18) is contained in the parameters a and

b, specifically, in the term ĥi that appears in the expression of mxi
(6.3.15). Substituting
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expression (6.3.15) in the expression in table (6.1), the parameter a results

a =

√√√√√2δ2

(∑NR

i=1

∣∣∣ĥi

∣∣∣2) (μH (Qm − δ1C−1
x ) μ)

(δ1 − δ2)2
=√

2δ2λ̂ (μH (Qm − δ1C−1
x ) μ)

(δ1 − δ2)2
= au,v(m)

√
λ̂.

(6.3.19)

In (6.3.19), λ̂ represents the largest eigenvalue of the matrix ĤĤH. Since the elements

of ĤĤH are complex Gaussian RVs, it is said to be a Wishart matrix [101].

In the same way, the parameter b can be expressed as

b = bu,v(m)
√

λ̂, (6.3.20)

Therefore, it is shown that the CCEP dependence on λ̂, so Ĥ can be expressed as a

CCEP dependence on λ̂, i.e.

I+
u,v(m; Ĥ) = I+

u,v(m; λ̂). (6.3.21)

6.3.2 Conditional and average BER expressions

The CCEP calculated in the previous section allows for the derivation of the conditional

BER (CBER). This probability represents the BER conditioned on the predicted effective

channel gain λ̂, i.e, the BER under imperfect channel state information (CSI). This CBER

can be expressed as

CBER(λ̂) =

√
M∑

u=1

√
M∑

v=1

√
M−1∑

m=u

ωu,v(m) · Iu,v(m; λ̂). (6.3.22)

The BER is obtained by averaging the CBER over the predicted eigenvalue λ̂ as

BER =

√
M∑

u=1

√
M∑

v=1

√
M−1∑

m=u

ωu,v(m)

∫ ∞

0

Iu,v(m; λ̂)p(λ̂)dλ̂. (6.3.23)

Using the fact that the pdf of the largest eigenvalue of the complex Wishart matrices can

be expressed as a weighted sum of elementary Gamma pdfs [102], the pdf of λ̂ is given by

p(λ̂) =

N1∑
l=1

(N2+N1−2m)m∑
r=N2−N1

Bl,r
λ̂r

(C11)r+1
exp

(
−lλ̂

C11

)
, (6.3.24)
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where N1
Δ
= min {NT , NR}, N2

Δ
= max {NT , NR}, C11 = E[|Ĥi,j|2] is defined in (6.3.6), and

the constants Bl,r are

Bl,r (N1, N2)
Δ
=

Al,r∏N1

l=1 (N1 − l)!
∏N1

l=1 (N2 − l)!
, (6.3.25)

and coefficients Al,r can be exactly computed by the algorithm proposed in [102].

Substituting (6.3.24) and (6.3.25) in expression (6.3.23), and using the expressions and

integrals given in [33, 103], a final expression for the BER is given as

BER =

√
M∑

u=1

√
M∑

v=1

√
M−1∑

m=u

N1∑
l=1

(N2+N1−2m)m∑
r=N2−N1

ωu,v(m)Bl,r

lr+1

{
r!

l1+r

{
1 +

b2
u,v(m)

eu,v(m)

r∑
l=0

(l + 1)

(
2l

eu,v(m)

)l

×
[
a2

u,v(m)

eu,v(m)
2F1

(
l + 2

2
,
l + 3

2
; 2;

4a2
u,v(m)b2

u,v(m)

e2
u,v(m)

)
− 1

1 + l
2F1

(
l + 1

2
,
l + 2

2
; 1;

4a2
u,v(m)b2

u,v(m)

e2
u,v(m)

)]}

+
(r + l)!

(au,v(m)bu,v(m))r+1

1

l!

(
pu,v(m) − 1

pu,v(m) + 1

)l/2(
pu,v(m) + 1

2

)r

×

2F1

(
−r,−r + l; l + 1;

pu,v(m) − 1

pu,v(m) + 1

)√(
p2

u,v(m) − 1
)r+1
}

,

(6.3.27)

where 2F1 is the Gauss hypergeometric function and

eu,v(m) = a2
u,v(m) + b2

u,v(m) + 2m, (6.3.28)

pu,v(m) =
(
1 − 4a2

u,v(m)b2u,v(m)

e2
u,v(m)

)−1/2

. (6.3.29)

Note that function 2F1 in (6.3.27) can be expressed as a finite sum of elementary functions

for the values of its arguments, although it is not shown here for compactness reasons.

6.4 Numerical Results

In this section, we use the closed-form expression obtained in Section 6.3.2 to evaluate the

BER for different particular scenarios.

For the numerical evaluation of the results, we assume the following default configuration:

2x2 MIMO scheme with 16-QAM constellation mapped onto the OFDM subcarriers, and

equal power for pilot and data subcarriers (EP = ES). The same number of taps has been
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Figure 6.2: BER as a function of the average SNR (γ), for a 16-QAM OFDM system over
Rayleigh fading channel, with sinc and Wiener filters, and a NT xNR antenna configuration.

considered both for the prediction and interpolation filters, i.e. NP = NI = 9. In the case

of sinc-type filters, Hamming windowing is performed. We further consider a feedback delay

τP = 4, position of data subcarrier relative to pilot allocation n0 = k0 = 1, and a frequency-

domain pilot spacing and time-domain pilot spacing ΔK = ΔN = 4. The normalized mean

delay spread εT as well as the normalized maximum Doppler shift εF are both set to 0.02.

BER curves in this section are represented as a function of the average signal to noise ratio

(SNR), namely γ = ES/N0.

In Figure 6.2, the influence of antenna configuration on the BER is studied, for Wiener

and sinc filters. Monte Carlo simulations for the 2x2 case and minimum mean square error

(MMSE) filtering are included, which correctly match with the theoretical results. Due to the

huge number of random variables involved in the analyzed scenario, it is not computationally

feasible to simulate the remainder configurations. The performance loss due to non-optimal
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Figure 6.3: BER vs. γ, for BPSK, QPSK and 16-QAM constellations in a 2x2 MIMO-OFDM
system over Rayleigh fading channel, with sinc and Wiener filters, for different values of the
normalized delay spread εT

filtering, for a BER = 10−4, is in the range of 1.5-2 dB for the studied antenna configurations.

It is interesting to highlight that the BER performance for 2x4 MIMO is approximately 3 dB

better compared to 4x2 configuration, whereas their performance is coincident when perfect

channel estimation is considered [10].

Figures 6.3 to 6.5 represent the BER evolution when different channel parameters are

varied, for a 2x2 antenna configuration. In Figure 6.3, it can be appreciated how a longer

channel impulse response (i.e. greater values of εT ) produces a more important BER degra-

dation when dense constellations are used.

In Figure 6.4, the effect of the Doppler shift on the BER performance is evaluated.

Since larger values of εF correspond to more rapidly varying channels, the BER performance

decreases when εF is increased. When working at low SNR, the performance of sinc filtering
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is barely affected under different Doppler shifts, since this scheme does not take advantage

of the knowledge of CSI.

Figure 6.4: BER vs. γ, for BPSK, QPSK and 16-QAM constellations in a 2x2 MIMO-OFDM
system over Rayleigh fading channel, with sinc and Wiener filters, for different values of the
normalized maximum Doppler shift εF

Finally, Figure 6.5 shows the effect of the feedback delay on the BER performance. In

general terms, when the feedback delay grows, the performance gap between MMSE and

sinc filtering is also increased.

6.5 Discussion

An exact BER analysis for MIMO-OFDM systems with transmit beamforming and MRC

reception in multipath Rayleigh fading channels, under channel prediction and interpolation

errors, was presented. The resulting exact closed-form expression was showed to be composed

by a finite sum of elementary functions.
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Figure 6.5: BER vs. γ, for a 16-QAM constellation and 2x2 MIMO-OFDM system over
Rayleigh fading channel, with sinc and Wiener filters, for different values of the feedback
delay τP

This expression was used to evaluate the system performance under different channel

configurations and number of antennas, with Wiener and sinc filter schemes for both channel

prediction and interpolation. Although Wiener filtering outperforms sinc-type filtering, the

latter is shown to be a reasonable approach for implementation in a real system, since it

offers a good trade-off between performance and complexity.

The main contributions of thus section have been published in [18].
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Chapter 7

Conclusion and future work

I
N this final chapter, the main conclusions which arise from the contributions of this

work are outlined. Besides, some future lines and applications regarding to the work

developed in this PhD thesis are suggested.

7.1 Conclusion

In this thesis, the problem of performance analysis in wireless communication systems under

non ideal conditions has been addressed. The main contributions of this work in this field

can be grouped into two principal points:

Firstly, a tool for the performance analysis of QAM systems has been developed. The

proposed general framework can be utilized in many scenarios, and includes previous results

in the literature as particular cases. By using this analysis method, the computation of

the elementary coefficients (which only depends on the constellation mapping) is separated

from the probability calculation (which only depends on the statistical distributions of the

RVs). Besides, this methodology may be useful to extend previous results in the literature

calculated only for particular constellations into general expressions.

On the other hand, the probability calculation in systems where the decision variable

can be expressed in terms of a general quadratic form D in complex Gaussian RVs has

been tackled, from different perspectives. Previous closed-form results given in [6, 10] for

calculating Pr{D < 0} have been used to analyze those scenarios where the involved RVs

were circularly symmetric. Additionally, approximate expressions for this probability have
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been obtained in terms of the Gaussian Q function. For the general case of non circularly

symmetric Gaussian RVs, an exact expression for Pr{D < 0} has been obtained in terms

of the Lauricella function FD(·), as well as two approximate expressions in terms of Appell

hypergeometric function F1(·) and in terms of rational functions.

Thus, the utilization of the proposed general framework for the performance analysis

of QAM systems in conjunction with the probability calculation using quadratic forms in

complex Gaussian RVs has enabled the analysis of a number of wireless communication

systems under a common approach. By means of a proper system modelling, it has been

demonstrated that this methodology is a feasible alternative for the analysis of MIMO and

OFDM systems affected by different impairments.

Regarding to the analysis of MIMO systems with ICSI in Ricean fading channels, two

scenarios which have not been previously analyzed in exact closed-form in the literature been

studied:

• A QAM system with MRC reception affected by Ricean-faded interferences. We show

that the effect of the LOS component of the interfering signal in the BER varies

depending of the value of the Ricean K factor of the interfering signal.

• A MIMO 2×NR system employing Alamouti diversity with MRC reception. We show

that this scheme can be reduced to an equivalent 1×2NR system where the noise term

is enhanced by the appearance of a block code interference due to ICSI.

In these scenarios, approximate expressions for the BER are also provided in terms of

the Gaussian Q function which are valid mainly for Ricean channels with a strong LOS

component.

Then, the effect of different impairments which affect OFDM systems that make use

direct conversion receivers has been analyzed:

• An OFDM system with MRC reception affected by ICSI, CFO and DC-offset. For

the particular case of PCSI and single branch reception, a simple expression for the

irreducible BER floor due to DC-offset is given. As a rule of thumb, we provide a

simple expression for the maximum DC offset allowable in a direct conversion receiver.

96



CHAPTER 7. CONCLUSION AND FUTURE WORK

• An OFDM system affected by ICSI and IQ imbalances both at the transmitter and

receiver sides. We show that the non circular symmetry of the equivalent channel gain

must be taken into account for a proper analysis. It is observed that RX IQ imbalance

is in general more detrimental that TX IQ imbalance; we also appreciate that the

correlation between the channel response at the desired frequency and at the mirror

frequency has an important effect in the performance degradation due to IQ imbalance.

Finally, a MIMO-OFDM system that combines transmit beamforming and MRC recep-

tion has been considered, in order to determine the effects of ICSI at the transmitter and

receiver sides. In this scenario, the BER conditioned to a particular channel state is calcu-

lated using the analysis of quadratic forms, and then the BER is obtained by averaging the

conditioned BER over all the channel states. It is found that ICSI at the transmitter side

has a greater impact in the BER compared to ICSI at the receiver side.

7.2 Future work

After the work developed in this thesis, there exist a number of applications where the

proposed methodology may be exploited. They involve either new scenarios, new fading

conditions or new impairments. Some examples are indicated below.

Firstly, in this thesis we have identified some scenarios where the classical analysis using

quadratic forms in complex Gaussian RVs was not applicable, thus making necessary the

calculation of Pr{D < 0} under new assumptions (i.e., non circular symmetry). It may also

result interesting the study of new kinds of quadratic forms which enable the analysis of

different systems. According to the expression of a general quadratic form given by

D �
L∑

k=1

A|Xk|2 + B|Yk|2 + CXkY
∗
k + C∗X∗

kYk, (7.2.1)

one valid example may be the consideration of correlated pairs of random variables Xk and Yk

with arbitrary mean and variance, i.e.,E{XjX
∗
k} �= 0, E{YjY

∗
k } �= 0 for any j �= k. This will

enable the analysis of multi-branch reception over correlated fading channels with quadratic

forms.
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In OFDM systems, it is usual to consider that synchronization is perfectly accomplished

at the receiver side. However, imperfect time and frequency synchronization may lead to the

appearance of inter symbol interference (ISI) and inter carrier interference (ICI), respectively.

It may result interesting to analyze the effect of these impairments from the perspective

exposed in this thesis, i.e., the use of quadratic forms.

Within this thesis, a number of MIMO systems affected by ICSI have been analyzed,

which mainly employed MRC reception in the receiver side. The proposed methodology is

directly applicable to other reception combining strategies such as equal gain combining or

selection combining. As well, it is also feasible the study of MIMO multiplexing systems

with the proposed methodology.

Finally, multicarrier systems based on OFDM have been analyzed in this thesis. However,

there are other strategies which are being considered for multicarrier transmission. One

valid example is Single-Carrier Frequency Division Multiple Access technology (SC-FDMA)

[104], which has been selected as transmission scheme for the uplink of 3GPP-LTE radio

technology. Since the exact BER calculation of these systems remains as an open problem

in some scenarios, it may result interesting to use the proposed methodology in this thesis

for the performance analysis.
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Appendix A

Resumen en castellano

A.1 Motivaciones de la tesis

La medida de prestaciones en sistemas de comunicaciones ha sido siempre un asunto de ex-

tremo interés desde sus oŕıgenes [1–3]. Además de la capacidad del canal, que básicamente

proporciona información sobre la máxima tasa de información libre de errores que puede lo-

grarse, estas prestaciones suele cuantificarse en términos de probabilidad de error de śımbolo

(SER, Symbol Error Rate) o de probabilidad de error de bit (BER, Bit Error Rate). Dependi-

endo de las caracteŕısticas del canal y del esquema de modulación, el análisis de prestaciones

puede llevarse a cabo de diferentes maneras.

Uno de los trabajos de referencia en este área fue publicado por Simon y Alouini [4],

en el que se analizan las prestaciones de diversos sistemas de comunicaciones afectados

por distintos tipos de desvanecimientos siguiendo una estrategia común. La aparición de

nuevos sistemas de comunicaciones digitales que emplean nuevos tipos de modulación o de

esquemas de transmisión hace necesaria la evaluación de sus prestaciones, de modo que

puedan compararse con las técnicas existentes. Algunos ejemplos son el uso de múltiples

antenas (MIMO, multiple-input multiple-output) o la técnica de multeplexación por división

en frecuencias ortogonales (OFDM, Orthogonal Frequency Division Multiplexing). Tanto

MIMO como OFDM están integrados en la mayor parte de tecnoloǵıas inalámbricas presentes

y futuras.

El cálculo anaĺıtico de las prestaciones de los sistemas de comunicaciones inalámbricas

afectados por distintos tipos de desvanecimientos ya ha sido llevado a cabo, suponiendo que

el estado del canal (CSI, Channel State Information) es conocido de manera perfecta en
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el receptor (e incluso en el transmisor, si es necesario) [5, 6]. Estos resultados son útiles

para determinar las prestaciones máximas que pueden alcanzarse en condiciones ideales.

Sin embargo, en la prćtica existen muchos factores que pueden limitar dichas prestaciones:

la aparición de señales interferentes, el conocimiento imperfecto del CSI, o no idealidades

relacionadas con la implementación f́ısica de los componentes tales como offset de frecuencia

de portadora, desbalanceo de las componentes en fase (I) y cuadratura (Q) u offset de continua

son algunos ejemplos.

En estas situaciones, el modelo de sistema es más complicado que el originalmente con-

siderado en [4], debido a la diferente naturaleza de las variables aleatorias (RVs, Random

Variables) que aparecen. Esto implica no sólo que los cálculos anaĺıticos a realizar sean más

complicados, sino que la simulación de estos escenarios puede llegar a ser inviable. Por tanto,

la obtención de expresiones cerradas que permitan evaluar de manera exacta las prestaciones

de estos sistemas es de vital necesidad, con el fin de poder determinar de manera eficiente

cómo estas imperfecciones afectan a las prestaciones del sistema.

Aunque existen distintas alternativas para el cálculo anaĺıtico de la BER en estos esce-

narios, en ocasiones es posible expresar la variable de decisión como una forma cuadrática;

aśı, el cálculo de probabilidades puede realizarse siguiendo una estrategia común.

El cálculo de probabilidades empleando formas cuadráticas fue introducido por Proakis

[6, 8] para el caso de RVs Gaussianas circularmente simétricas, posibilitando el análisis de

diferentes escenarios [9, 10] en los que la utilización de otras alternativas para el cálculo

de la BER era inviable desde un punto de vista práctico. Recientemente, los resultados de

Proakis han sido generalizados [11], proporcionando un modo de obtener la función carac-

teŕıstica de una forma cuadrática general para distintos tipos de desvanecimientos (es decir,

RVs de diferente naturaleza). Sin embargo, tanto [6] como [11] asumen que las RVs son

circularmente simétricas, es decir, que sus partes reales e imaginarias son independientes y

tienen igual varianza. Dado que la condición de circularidad simétrica [12, 13] no siempre

se satisface, parece interesante analizar las formas cuadráticas en las que las RVs carecen de

esta propiedad.

Otro problema que se presenta a la hora de evaluar las prestaciones de un sistema de

comunicaciones está relacionado con el cálculo de la probabilidad para distintas constela-

ciones. Un gran número de análisis en la bibliograf́ıa, aun de incuestionable interés, realizan
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de manera individual el análisis para cada constelación, ya sea BPSK (Binary Phase-Shift

Keying) o del tipo M -QAM (Quadrature Amplitude Modulation) [9, 14, 15]. Conforme el

tamaño de la constelación aumenta, el cálculo se hace más tedioso, ya que se obtienen de

manera expĺıcita las diferentes probabilidades asociadas a que cada bit del śımbolo recibido

se encuentre dentro de una determinada región de decisión, y luego estas probabilidades

individuales se combinan. Por tanto, parece deseable el uso de un método sistemático que

permita realizar los cálculos de una manera genérica, independientemente del tamaño de la

constelación.

Las motivaciones de esta tesis pueden resumirse en dos objetivos principales:

• Proporcionar un método general para el cálculo de la BER en sistemas basados en

QAM para cualquier tamaño de constelación.

• Analizar sistemas MIMO y OFDM afectados por ciertas no idealidades, mediante el

uso del cálculo de probabilidades basados en formas cuadráticas Gaussianas.

A.2 Análisis generalizado de la probabilidad de error

En esta sección se presenta una metodoloǵıa general para el análisis de prestaciones de

sistemas QAM. El único requisito es que el mapeo de los bits en las partes en fase y cuadratura

se realice de manera independiente, e incluye análisis previos de la bibliograf́ıa como casos

particulares [16, 17].

La técnica propuesta permite separar el análisis en dos tareas principales, que pueden

llevarse a cabo de manera independiente: el cálculo de los coeficientes elementales, cuyo

valor depende sólo del mapeo elegido para la constelación, y el cálculo de las componentes

de probabilidad de error, cuyo valor depende únicamente de la distribución de las variables

aleatorias en el escenario considerado.

A.2.1 Marco Anaĺıtico

Consideremos el problema general del cálculo de la BER cuando la variable de decisión

se puede expresar mediante la forma canónica y = az + ζ, donde a (desajuste de ganan-

cia) y ζ (ruido equivalente) son en general RVs complejas. En este modelo, el desajuste

de ganancia a incorpora el efecto de la compensación imperfecta de canal en recepción,
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mientras que el ruido equivalente ζ incluye los efectos del ruido aditivo, interferencias y

otras imperfecciones del receptor. En esta forma canónica z es el śımbolo transmitido

perteneciente a una constelación QAM rectangular, compuesta de dos constelaciones L1-

PAM y L2-PAM asociadas con las componentes I y Q. El conjunto de śımbolos complejos es

{su,v = (2u − L1 − 1)d + j(2v − L2 − 1)d}u=1,...,L1;v=1,...,L2 , donde 2d es la mı́nima distancia

entre śımbolos. Cada śımbolo su,v tiene asociado un conjunto de bits de la componente I

{bIi (u)}i=1,...,log2(L1) y otro de la componente Q {bQi (v)}i=1,...,log2(L2). Los ĺımites de las regiones

de decisión para las componentes I y Q se denotan como {BI(k) = (2k − L1)d}k=1,...,L1−1 y

{BQ(k) = j(2k − L2)d}k=1,...,L2−1 respectivamente.

La BER puede expresarse como el promedio, sobre todos los bits y śımbolos transmitidos,

de la probabilidad de error de un bit determinado condicionada a la transmisión de un śımbolo

determinado:

BERQAM =
1

L1L2

L1∑
u=1

L2∑
v=1

1

log2(L1L2)

⎧⎨
⎩

log2(L1)∑
i=1

PI(i, u, v) +

log2(L2)∑
i=1

PQ(i, u, v)

⎫⎬
⎭ , (A.2.1)

donde PI(i, u, v) = Pr{error en bIi (u)| z = su,v} y PQ(i, u, v) = Pr{error en bQi (v)| z = su,v},
respectivamente. Cada término PI(i, u, v) puede expresarse como una combinación lineal de

probabilidades de que la parte real de la variable de decisión y esté por encima o por debajo

de un número determinado de ĺımites de decisión; igualmente ocurre para la componente Q,

considerando la parte imaginaria de y. Esta idea puede formalizarse como

BERQAM =
1

L1L2

L1∑
u=1

L2∑
v=1

1

log2(L1L2)

⎡
⎣log2(L1)∑

i=1

{
u−1∑
k=1

α−
u (i, k) · I−

u,v(k) +

L1−1∑
k=u

α+
u (i, k) · I+

u,v(k)

}

+

log2(L2)∑
i=1

{
v−1∑
k=1

β−
v (i, k) · Q−

u,v(k) +

L2−1∑
k=v

β+
v (i, k) · Q+

u,v(k)

}⎤⎦ ,

(A.2.2)

donde las componentes de probabilidad de error (CEP) se definen como

I−
u,v(k) = Pr {� {y − BI(k)} < 0| z = su,v} , I+

u,v(k) = Pr {� {y − BI(k)} > 0| z = su,v},
Q−

u,v(k) = Pr {� {y − BQ(k)} < 0| z = su,v} , Q+
u,v(k) = Pr {� {y − BQ(k)} > 0| z = su,v}.

(A.2.3)

Los coeficientes elementales α±
u (i, k) y β±

v (i, k) toman los valores {−1, 0, 1} y representan

cambios en el valor correspondiente del bit i a través del k -ésimo ĺımite de decisión para el
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śımbolo su,v: 0 indica que el valor del bit no cambia, 1 indica que el bit cambia del valor

correcto al incorrecto, y -1 indica un cambio de un valor incorrecto a otro correcto. Tanto

α como I están asociados con la compenete I, mientras que β y Q están asociados con la

componente Q. El signo en el supeŕındice indica que si el k -ésimo ĺımite de decisión está

por debajo o por encima (respectivamente - ó +) de la parte real (para α e I) o de la parte

imaginaria (para β y Q) del śımbolo su,v.

Agrupando los coeficientes α±
u (i, k) y β±

u (i, k) del siguiente modo

α±
u (k) =

log2(L)∑
i=1

α±
u (i, k), β±

v (k) =

log2(L)∑
i=1

β±
v (i, k), (A.2.4)

se obtiene la expresión final de la probabilidad de error.

BERQAM =
1

L1L2

L1∑
u=1

L2∑
v=1

1

log2(L1L2)

[
u−1∑
k=1

α−
u (k) · I−

u,v(k) +

L1−1∑
k=u

α+
u (k) · I+

u,v(k)

+
v−1∑
k=1

β−
v (k) · Q−

u,v(k) +

L2−1∑
k=v

β+
v (k) · Q+

u,v(k)

]
.

(A.2.5)

Esta expresión (A.2.5) permite calcular la BER en cualquier escenario que pueda reducirse

a la forma canónica y = az + ζ, independientemente de la distribución de las RVs a y ζ. De

este modo, el cálculo de la BER se reduce a dos operaciones fundamentales: los coeficientes

elementales, cuyo valor depende únicamente del mapeo de la constelación, y las componentes

de probabilidad de error cuya expresión vendrá determinada por la distribución de las RVs

a y ζ.

Además de esta expresión general, es posible usar expresiones simplificados para ciertos

casos de interés, habituales en comunicaciones. Por ejemplo, si se considera por simplicidad

una constelación cuadrada L1 = L2 = L, y el ruido equivalente ζ es circularmente simétrico,

es posible aplicar ciertas simetŕıas para expresar la BER como

BERQAM =
L∑

u=1

L∑
v=1

L−1∑
k=u

ωu(k) · I+
u,v(k), (A.2.6)

donde

ωu(k) =
1

M

1

log2(M)

[
α+

u (k) + α−
L−u+1(L − k) + β+

u (k) + β−
L−u+1(L − k)

]
. (A.2.7)

Si además se considera que la compensación de canal en recepción es perfecta (es decir

a = 1), podemos expresar la BER de manera aún más compacta como
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A.2. ANÁLISIS GENERALIZADO DE LA PROBABILIDAD DE ERROR

BERQAM =
L−1∑
m=1

ω(m)I+(m), (A.2.8)

donde

I+(m) = Pr {� {ζ} > (2m + 1)d}. (A.2.9)

y

ω(m) =
1

M log2(M)

[
L−m∑
u=1

α+
u (u + m − 1) + α−

u+m(u) + β+
u (u + m − 1) + β−

u+m(u)

]
.

(A.2.10)

A.2.2 Cálculo de coeficientes

En esta tesis, se propone el cálculo de los coeficientes elementales a partir de la expresión

de la secuencia de bits que se mapean en las componentes I/Q como señales discretas. Aśı,

se expresa dicha secuencia como un conjunto de i señales discretas bi(m) que representan

los valores binarios del bit i-ésimo del śımbolo m-ésimo. Usando esta definición, la derivada

discreta de la secuencia de bits en el ĺımite de decisión k-ésimo viene dada por

b
′
i(k) = bi(k + 1) − bi(k), 1 ≤ k ≤ L − 1. (A.2.11)

Esta expresión (A.2.11) ofrece información sobre los errores de bit al pasar un ĺımite de

decisión. Esta derivada discreta b
′
i(k) puede interpretarse del siguiente modo: 0 indica que

el valor del bit no cambia, 1 indica que el bit cambia de 0 a 1, y -1 indica que el bit cambia

de 1 a 0.

Como los coeficientes α±
u (i, k) y β±

v (i, k) representan cambios en el valor detectado del

bit i a través del ĺımite de decisión k -ésimo, pueden expresarse (p.ej. α+) como:

α+
u (i, k) = (1 − 2bi(u))b

′
i(k), (A.2.12)

donde (1 − 2bu(i)) traduce los valores de bi(u) del conjunto {0, 1} a {1,−1}. El cálculo de

α−
u (i, k) y β±

v (i, k) se realiza de una manera similar

α−
u (i, k) = −(1 − 2bi(u))b

′
i(k),

β+
v (i, k) = (1 − 2bi(v))b

′
i(k),

β−
v (i, k) = −(1 − 2bi(v))b

′
i(k).

(A.2.13)
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Para el caso particular de mapeo tipo Gray es posible encontrar una expresión más

compacta:

bi(u) =
1

2
(1 − Ω (i, u)) , (A.2.14)

donde Ω(i, x) se define en (A.2.15) como

Ω (i, x)
Δ
= sign {cos (ωi(x − 1/2))} , (A.2.15)

y la frecuencia ωi = 2π
2i+1 incluye la periodicidad de la señal discreta bi(u). En este caso, la

derivada de la secuencia de bits es

b
′
i(k) = bi(k + 1) − bi(k) =

1

2
(Ω (i, k) − Ω (i, k + 1)) =

1

2
(Ω (i, k) − Ω (i,−k)) , (A.2.16)

donde k = 1 . . . L − 1. Combinando (A.2.14) y (A.2.16) se obtiene

α+
u (i, k) = (1 − 2bi(u))b

′
i(k) =

1

2
Ω (i, m) [Ω (i, k) − Ω (i,−k)] . (A.2.17)

A.3 Cálculo de probabilidades con formas cuadráticas

En muchos sistemas de comunicaciones, es habitual que la variable de decisión pueda expre-

sarse como un caso especial de una forma cuadrática general D, definida como

D �
L∑

k=1

A|Xk|2 + B|Yk|2 + CXkY
∗
k + C∗X∗

kYk, (A.3.1)

donde A, B ∈ R y C ∈ C son constantes, y Xk e Yk son pares de RVs complejas arbi-

trariamente distribuidas. Esta tesis se centra en las formas cuadráticas con RVs Gaussianas

complejas, que aparecen de manera natural en diferentes escenarios a la hora de evaluar la

BER.

A.3.1 Circularidad simétrica

Caso general

En [6] se presenta una expresión cerrada para el cálculo de Pr{D < 0}, sujeta a dos condi-

ciones: (1) que los L pares {Xk, Yk} sean mutuamente independientes e idénticamente dis-

tribuidos, y (2) que las RVs {Xk − E{Xk}} e {Yk − E{Yk}} sean circularmente simétricas,

es decir, que sus partes real e imaginaria sean independientes y de igual varianza [13].
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En este escenario, la probabilidad Pr {D < 0} se calcula como

Pb � Pr {D < 0} =
1

2π

∫ 0

−∞
dD

∫ ∞

−∞
Φ(ω)e−jωDdω, (A.3.2)

donde Φ(ω) es la función caracteŕıstica de D.

Usando los resultados de [28], la función caracteŕıstica de la forma cuadrática puede

expresarse como

Φ(ω) =
1

(1 − jωλ1) (1 − jωλ2)
exp

(
jωmH

k Qmk + ω2λ1λ2m
H
k R−1mk

(1 − jωλ1) (1 − jωλ2)

)
, (A.3.3)

donde λi son los autovalores de la matriz RQ.

Aśı, la expresión final (exacta y cerrada) de esta probabilidad [10] es

Pb =Q1(a, b) +
L−1∑
m=0

Cm(a, b, η)Im(ab) × exp

{
−(a2 + b2)

2

}
, (A.3.4)

donde Q1(a, b) es la función Q de Marcum, Im(x) es la función de Bessel de primera especie

y orden m, y los parámetros a, b, η y Cm(·) se calculan de acuerdo a las expresiones de la

Tabla A.1.

Caso asintótico

Usando algunas de las relaciones asintóticas en [5]

Q1(a, b) ∼
√

b

a
Q(b − a), si b → ∞, (A.3.5)

Im(ab) ∼ exp(ab)√
2πab

, si a · b → ∞, (A.3.6)

Q(x) ∼ exp(−x2

2
)√

2πx
, si (b − a) → ∞, (A.3.7)

se puede obtener una expresión aproximada para la probabilidad buscada

Pr {D < 0} ≈ T · Q(b − a), (A.3.8)

donde el parámetro T se calcula como

T �
√

b

a
+

b − a√
ab

NR−1∑
m=0

Cm(a, b, η). (A.3.9)

106



APPENDIX A. RESUMEN EN CASTELLANO

Table A.1: Cálculo de Probabilidad usando formas cuadráticas Gaussianas

Functions and Definitions

Parameters

{λi}i=1,2
1
2
tr(RQ) + (−1)i−1

√(
1
2
tr(RQ)

)2 − det(RQ)

η

∣∣∣∣λ1

λ2

∣∣∣∣
a

√
2λ2

(
ΣL

k=1m
H
k [Q − λ1R

−1]mk

)
(λ1 − λ2)

2

b

√
2λ1

(
ΣL

k=1m
H
k [Q − λ2R

−1]mk

)
(λ1 − λ2)

2

Cm(a, b, η)

⎧⎪⎪⎨
⎪⎪⎩

−1 +
1

(1 + η)2L−1

L−1∑
n=0

(
2L − 1

n

)
ηn , m = 0

1

(1 + η)2L−1

L−1−m∑
n=0

(
2L − 1

n

)[(
b

a

)m

ηn −
(a

b

)m

η2L−1−n

]
, m �= 0

A.3.2 No circularidad simétrica

En la sección A.3.1 se ha introducido el análisis de formas cuadráticas cuando las RVs Gaus-

sianas son circularmente simétricas. Aqúı, se introduce el análisis para formas cuadráticas

en las que las RVs no son circularmente simétricas, para el caso particular de media nula.

Caso General

En este caso, se emplearán los mapeos y la notación s x → x̆ y A → Ă, definidos en [29]

x̆ �
[
�(x)

�(x)

]
=

[
xr

xi

]
∈ R

2n, Ă �
[
�(A) −�(A)

�(A) �(A)

]
∈ R

2m×2p. (A.3.10)

Aśı, se puede expresar la forma cuadrática como

D = x̆T
k Q̆x̆k. (A.3.11)
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La función caracteŕıstica de D viene dada por

Φ(ω) =
1

4∏
i=1

√
1 − 2jλiω

, (A.3.12)

donde λi son los autovalores de la matriz RQ̆ [30].

Es posible calcular anaĺıticamente Pr {D < 0}, obteniéndose

Pr {D < 0} =

√
ω1ω2ω4

d1,3d2,3ω3

FD

(
1

2
, 1,

1

2
,
1

2
; 1;

d3,4

ω3

,−d3,4

d1,3

,−d3,4

d2,3

)
, (A.3.13)

donde ωI−
i=1...4 = −1

2λi
, di,j = ωi − ωj, y FD es la función de Lauricella.

Análisis asintótico 1

Cuando el grado de circularidad simétrica en las RVs no es fuerte, puede demostrarse que

d1,3 ≈ d2,3. Por tanto, se puede usar la siguiente relación entre FD(·) y la función hiper-

geométrica de Appell F1(·)

FD(
1

2
, 1,

1

2
,
1

2
; 1; x1, x, x) ≡ F1(

1

2
, 1, 1; 1; x1, x), (A.3.14)

para expresar de modo aproximado Pr {D < 0} como

Pr {D < 0} ≈
√

ω1ω2ω4

d1,3d2,3ω3

F1

(
1

2
, 1, 1; 1;

d3,4

ω3

,
d3,4

d̄

)
, (A.3.15)

donde d̄ � d1,3+d2,3

2
.

Análisis asintótico 2

Si la no circularidad simétrica se reduce aún más, puede asumirse que |ω3| << |d1,3| y

|d3,4| <<< |d1,3|, respectivamente. Por tanto, puede esperarse que x → 0 en (A.3.15).

Usando algunas equivalencias [33, eq. 9.121], se obtiene

F1(
1

2
, 1, 1; 1; x1, x → 0) ≈ 1√

1 − x1

. (A.3.16)

Finalmente, se puede obtener una segunda expresión aproximada para la probabilidad bus-

cada

Pr {D < 0} ≈
√

ω1ω2

ω3 − ω1+ω2

2

. (A.3.17)
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A.4 Aplicaciones

A.4.1 BER en sistemas MIMO con desvanecimientos Rice

Caso 1: Interferencia tipo Rice

Se considera un sistema 1 × NR en el que la señal recibida en la antena k viene dada por

rk = gkz + hkρi + wk, (A.4.1)

donde z es el śımbolo M -QAM transmitido, gk y hk son RVs Gaussianas de medias mgk
, mhk

y varianzas σ2
g , σ2

h respectivamente, ρi es el śımbolo interferente y wk es el ruido AWGN de

media cero y varianza σ2
w.

La probabilidad de error puede calcularse mediante el análisis de formas cuadráticas

presentado en (A.3.1), obteniendo una expresión exacta y cerrada de la BER, aśı como una

expresión asintótica para el caso simplificado de interferencia Rayleigh y estimación de canal

perfecta. La Fig. A.1 muestra la BER en función de la relación señal a interferencia γI , para

distintos valores del factor KI de la señal interferente.

Figure A.1: BER vs γI , para diferentes KI , NR=2, 16-QAM, Kg=10 dB.

Cuando γI es baja, la componente LOS de la interferencia desplaza el śımbolo recibido

fuera de las regiones de decisión. Como la magnitud de este desplazamiento crece con KI , la
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BER también aumenta con KI . Por el contrario, si γI es aún más baja, el śımbolo recibido

puede llegar a desplazarse más allá de varias regiones de decisión, provocando más de un bit

erróneo por śımbolo. Para valores elevados de γI , la BER aumenta cuando KI disminuye.

Caso 2: Alamouti-MRC

En este caso, se considera un sistema MIMO 2 × NR, en el que se emplea el esquema de

transmisión de Alamouti [41] junto con recepción MRC. Durante dos intervalos de śımbolo

consecutivos, se transmiten z1 y z2 de acuerdo al esquema de codificación descrito en [41].

Se ha demostrado que en este escenario, la variable de decisión para los śımbolos zi es

equivalente a la de un escenario 1 × 2NR, en el que los términos equivalentes de ruido en la

antena receptora j se ven aumentados por efecto del error de estimación de canal Ψi,j:

Nuevamente, en este escenario la probabilidad de error puede expresarse de manera exacta

y cerrada en términos de las funciones Q de Marcum e Iν de Bessel. También es posible

hallar una expresión asintótica usando la función Q de Gauss, cuando la componente LOS

es dominante. En la Fig. A.2, se comparan las prestaciones de un sistema 2×NR Alamouti-

MRC con las de un sistema 1×2NR MRC convencional [9], en presencia de error de estimación

de canal.

Figure A.2: Alamouti-MRC 2 × NR vs. 1 × 2NR MRC. BER vs SNR para distintos valores
de ICSI.
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Puede verse que ambos esquemas se comportan de manera idéntica cuando la estimación

de canal es perfecta. Sin embargo, Alamouti-MRC sufre de una mayor degradación de la

BER debido al efecto del ICSI, ya éste que causa un aumento del ruido equivalente.

A.4.2 BER en OFDM con recepción directa

En esta sección, el análisis se centra en dos de las principales imperfecciones asociadas con los

receptores OFDM por conversión directa (DCRs), que son muy utilizados en la actualidad

para el desarrollo de cabezales de radio integrados en sistemas inalámbricos de bajo coste:

el offset de continua (DC) y el desbalanceo de las componentes en fase y cuadratura (IQ).

Además, el efecto del ICSI se incluye en ambos escenarios.

Caso 1: Offset de DC

En el modelo de sistema considerado, la señal recibida en banda base en la antena receptora

v-ésima puede expresarse como

yv[n] =
1√
N

N/2−1∑
m=−N/2

Hv,mXme
j2πn(m+ε)

N + ηv + wv[n], (A.4.2)

donde N es el número de subportadoras, n = 0 . . . N − 1 es el ı́ndice de tiempo discreto del

śımbolo OFDM, Xm es el śımbolo BPSK transmitido en la m-ésima subportadora, ηv es el

offset de DC, ε es el offset de frecuencia de portadora (CFO) normalizado, wv[n] es el ruido

AWGN y Hv,m es la respuesta en frecuencia del canal.

Tras la compensación del CFO, el offset de DC se desplaza a la frecuencia discreta ε, pro-

duciendo una interferencia ζk(ε) que será más acusada en las portadoras adyacentes. Es este

escenario, la BER se ha calculado de manera exacta y cerrada empleando únicamente fun-

ciones de Bessel. Aśı mismo, se ha obtenido una expresión muy simple de la BER irreducible

en la portadora k debida al CFO y al offset de DC

Pk ≈ |ηvζk(ε)|2
4Es

. (A.4.3)

También se ha derivado una expresión que determina el máximo offset de DC admisible en

un receptor para un valor objetivo de SNR en recepción γ̄th,

|ηv(max)|2 =
Es

8|ζk(ε)|2
(

1 −
√

γ̄th

1 + γ̄th

)
. (A.4.4)
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En la Fig. 5.2 se muestra la BER promedio en función de la SNR. Cuando existe PCSI, el

suelo de BER debido al offset de DC se estima eficientemente usando (A.4.3).

Figure A.3: BER vs SNR, NR=1, BPSK, para distintos valores de DC offset e ICSI.

Caso 1: Desbalanceo IQ

En el modelo de sistema considerado, la señal recibida en la portadora k puede expresarse

como

rk = gkzk + h−kz−k + wk, (A.4.5)

donde k ∈ {−N/2, . . . , N/2 − 1}, N es el número de subportadores del śımbolo OFDM, zk

y z−k son los śımbolos QAM transmitidos en las subportadoras k y −k, respectivamente. El

término h−kz−k se conoce como interferencia espejo (MCI).

Los términos restantes en (A.4.5) se expresan como

gk = K1G1Hk + K2G2H
∗
−k, (A.4.6)

h−k = K2G
∗
1H

∗
−k + K1G

∗
2Hk, (A.4.7)

wk = K1nk + K2n
∗
−k, (A.4.8)
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donde Hk y H−k representan la respuesta en frecuencia del canal en las subportadoras k y

−k, y los términos nk y n−k representan el ruido AWGN. Finalmente, Gi y Ki (i = 1, 2)

modelan el efecto del desbalanceo IQ en transmisor y receptor, respectivamente:

G1 =
1 + αte

jϕt

2
, G2 =

1 − αte
−jϕt

2
, (A.4.9)

K1 =
1 + αre

−jϕr

2
, K2 =

1 − αre
jϕr

2
. (A.4.10)

En este escenario, puede demostrarse que gk es una RV Gaussiana no circularmente

simétrica. Por tanto, el análisis de BER se lleva a cabo empleando las expresiones derivadas

en (A.3.2). Aśı, la BER se expresa de manera exacta en términos de la función FD de

Lauricella. También se han obtenido dos expresiones aproximadas, válidas para distintas

magnitudes del desbalanceo IQ.

En la Fig. A.4 es posible apreciar el efecto de la correlación entre Hk y H−k. Se observa

cómo el efecto del desbalanceo IQ depende fuertemente del valor de dicha correlación. Por

tanto, la asunción de independencia estad́ıstica [81, 83] lleva a una estimación pesimista de

la BER.

Figure A.4: BER vs SNR, en función de la correlación ρ, PCSI.
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A.4.3 BER en sistemas MIMO-OFDM Beamforming con errores
de estimación de canal

El modelo de sistema MIMO-OFDM con beamforming en transmisión y recepción MRC se

muestra en Fig. A.5. En este sistema, el śımbolo z se transmite por el conjunto de NT

antenas transmisoras mediante un vector de pesos v̂, que se env́ıa desde el receptor a través

de un canal de retorno con retardo τP .

Figure A.5: Modelo de sistema MIMO-OFDM Beamforming-MRC e ICSI

En este escenario, se calcula la BER condicionada a un estado del canal usando el análisis

de formas cuadráticas para RVs circularmente simétricas. La CEP se define como

Iu,v(m; Ĥ) = Pr
{
�{r} − B(m) > 0 | Ĥ, z = su,v

}
. (A.4.11)

De este modo, la probabilidad de error final se obtiene promediando la BER condicionada

con todos los posibles estados del canal. En la Fig. A.6 se evalúan las prestaciones para

distintas configuraciones de antena, cuando la estimación de canal usa filtros de Wiener y de

tipo sinc. Es interesante destacar que la BER en la configuración 2 × 4 es unos 3 dB mejor

que en la 4 × 2, mientras que en el caso de PCSI sus prestaciones coinciden [10].

A.5 Conclusiones

En esta tesis, se ha considerado el problema del análisis de prestaciones en sistemas de

comunicaciones inalámbricas no ideales. Las principales contribuciones de esta tesis en dicho

campo pueden agruparse en dos puntos:
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Figure A.6: BER vs SNR, 16-QAM, canal Rayleigh, interpoladores tipo sinc y de Wiener,
configuración NT × NR.

En primer lugar, se ha desarrollado una herramienta para el cálculo de probabilidad en

sistemas QAM. El marco anaĺıtico que se propone puede ser utilizado en multitud de es-

cenarios, e incluye análisis previos de la bibliograf́ıa como casos particulares. Usando esta

metodoloǵıa, el cálculo de los coeficientes elementales (que sólo depende del mapeo de la

constelación) se separa del cálculo de probabilidades (que sólo depende de la distribución

estad́ıstica de las RVs).

Por otra parte, se ha abordado el cálculo de probabilidades en sistemas donde la vari-

able de decisión puede expresarse como una forma cuadrática con RVs Gaussianas, desde

diferentes perspectivas. Se han usado y extendido los resultados de [6, 10] para analizar

escenarios en los que las RVs son circularmente simétricas. Para el caso general de RVs no

circularmente simétricas, se ha encontrado una expresión exacta y cerrada para Pr{D < 0},
en términos de la función FD(·) de Lauricella, aśı como dos expresiones aproximadas en

términos de la función hipergeométrica de Appell F1(·) y de funciones racionales.
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De este modo, el uso conjunto del marco anaĺıtico para el análisis de prestaciones de sis-

temas QAM y del cálculo de probabilidades usando formas cuadráticas ha permitido llevar a

cabo el análisis de varios sistemas de comunicaciones inalámbricas siguiendo una metodoloǵıa

común. Mediante la definición adecuada de modelos de sistema, se ha demostrado que esta

técnica es una alternativa viable para el cálculo de la BER en sistemas MIMO-OFDM no

ideales.

En lo relativo a sistemas MIMO con estimación de canal imperfecta en canales Rice, dos

escenarios que no hab́ıan sido analizados en la bibliograf́ıa han sido estudiados:

• Un sistema QAM con recepción MRC afectado por interferencias de tipo Rice. Se ha

demostrado que el efecto de la componente LOS de la señal interferente en la BER

vaŕıa dependiendo de la magnitud de la dicha componente (es decir, del parámetro K

de Rice).

• Un sistema MIMO 2 × NR que usa la técnica de Alamouti junto con recepción MRC.

Se ha demostrado que este esquema puede reducirse a un sistema 1× 2NR equivalente

en el que el ruido equivalente aumenta debido al efecto de la interferencia en el código

de Alamouti debido al error de estimación de canal.

En estos escenarios, también se han propuesto expresiones aproximadas para la BER

usando la función Q de Gauss, válidas para canales Rice con una fuerte componente LOS.

También, se ha analizado el efecto de diferentes imperfecciones que afectan a sistemas

OFDM que emplean recepción por conversión directa:

• Un sistema OFDM con recepción MRC y estimación de canal imperfecta, CFO y offset

de DC. Para el caso particular de estimación de canal perfecta y recepción con una

sola antena, se proporciona una expresión muy simple para el suelo de error irreducible

en la BER debido al offset de DC. También se establece una regla de diseño para el

máximo offset de DC admisible en un receptor, para una SNR determinada.

• Un sistema OFDM con desbalanceo I/Q en transmisor y receptor y estimación imper-

fecta de canal. Se ha demostrado que la ganancia equivalente del canal es una RV sin

circularidad simétrica. En los resultados se aprecia que la correlación entre la respuesta

en frecuencia en la portadora deseada y en la interferente espejo tiene un importante

efecto en la BER.
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Finalmente, se ha analizado un sistema MIMO-OFDM que combina beamforming en

transmisión y MRC en recepción, con el fin de establecer el efecto del conocimiento imperfecto

del estado del canal (ICSI) en ambos extremos de la comunicacin. En este escenario, se

calcula la BER condicionada a un estado del canal mediante formas cuadráticas, y esta

BER se promedia sobre todos sus posibles estados para obtener la expresión final. Se ha

comprobado que el efecto del ICSI en la BER es mayor en el transmisor que en el receptor.
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